python 实现决策原理_决策树原理的python实现

#-*- coding: utf-8 -*-

"""Created on Tue Aug 11 10:12:48 2020

@author: Admin"""

from math importlogimportoperator"""Parameters:

Returns:

dataSet - 数据集

labels - 特征标签"""

#函数说明:创建测试数据集

defcreateDataSet():

dataSet= [[0, 0, 0, 0, 'no'],#数据集

[0, 0, 0, 1, 'no'],

[0,1, 0, 1, 'yes'],

[0,1, 1, 0, 'yes'],

[0, 0, 0, 0,'no'],

[1, 0, 0, 0, 'no'],

[1, 0, 0, 1, 'no'],

[1, 1, 1, 1, 'yes'],

[1, 0, 1, 2, 'yes'],

[1, 0, 1, 2, 'yes'],

[2, 0, 1, 2, 'yes'],

[2, 0, 1, 1, 'yes'],

[2, 1, 0, 1, 'yes'],

[2, 1, 0, 2, 'yes'],

[2, 0, 0, 0, 'no']]

labels= ['年龄', '有工作', '有自己的房子', '信贷情况']#特征标签

return dataSet, labels#返回数据集和分类属性

"""Parameters:

dataSet - 数据集

Returns:

shannonEnt - 经验熵(信息熵)"""

#函数说明:计算给定数据集的经验熵(信息熵)#注意数据的数据类型是list

defcalcShannonEnt(dataSet):

numEntires= len(dataSet) #返回数据集的行数

labelCounts = {} #保存每个标签(Label)出现次数的字典

for featVec in dataSet: #对每组特征向量进行统计

currentLabel = featVec[-1] #提取标签(Label)信息

if currentLabel not in labelCounts.keys(): #如果标签(Label)没有放入统计次数的字典,添加进去

labelCounts[currentLabel] =0

labelCounts[currentLabel]+= 1 #Label计数

shannonEnt = 0.0 #经验熵(信息熵)

for key in labelCounts: #计算香农熵

prob = float(labelCounts[key]) / numEntires#选择该标签(Label)的概率

shannonEnt -= prob * log(prob, 2) #利用公式计算

return shannonEnt #返回经验熵(信息熵)

"""Parameters:

dataSet - 待划分的数据集

axis - 划分数据集的特征

value - 需要返回的特征的值

Returns:

无"""

#函数说明:按照给定特征划分数据集#其实是根据某个特征的值去划分数据集,且去掉该特征,为的是后面计算子集

defsplitDataSet(dataSet, axis, value):

retDataSet= [] #创建返回的数据集列表

for featVec in dataSet: #遍历数据集

if featVec[axis] ==value:

reducedFeatVec= featVec[:axis] #去掉axis特征

reducedFeatVec.extend(featVec[axis+1:])#将符合条件的添加到返回的数据集

retDataSet.append(reducedFeatVec)return retDataSet #返回划分后的数据集

splitDataSet(dataSet, 0, 0)"""Parameters:

dataSet - 数据集

Returns:

bestFeature - 信息增益最大的(最优)特征的索引值"""

#函数说明:选择最优特征

defchooseBestFeatureToSplit(dataSet):

numFeatures= len(dataSet[0]) - 1 #特征数量

baseEntropy = calcShannonEnt(dataSet) #计算数据集的信息熵

bestInfoGain = 0.0 #信息增益

bestFeature = -1 #最优特征的索引值

for i in range(numFeatures): #遍历所有特征

#获取dataSet的第i个所有特征

featList = [example[i] for example in dataSet] #得到第i列的值

uniqueVals = set(featList) #创建set集合{},元素不可重复

newEntropy = 0.0 #经验条件熵

for value in uniqueVals: #计算信息增益

subDataSet = splitDataSet(dataSet, i, value) #subDataSet划分后的子集

prob = len(subDataSet) / float(len(dataSet)) #计算子集的概率

newEntropy += prob * calcShannonEnt(subDataSet)#根据公式计算经验条件熵

infoGain = baseEntropy - newEntropy #信息增益

#print("第%d个特征的增益为%.3f" % (i, infoGain)) #打印每个特征的信息增益

if (infoGain > bestInfoGain): #计算信息增益

bestInfoGain = infoGain #更新信息增益,找到最大的信息增益

bestFeature = i #记录信息增益最大的特征的索引值

return bestFeature #返回信息增益最大的特征的索引值

"""Parameters:

classList - 类标签列表

Returns:

sortedClassCount[0][0] - 出现此处最多的元素(类标签)"""

#函数说明:统计classList中出现此处最多的元素(类标签)

defmajorityCnt(classList):

classCount={}for vote in classList:#统计classList中每个元素出现的次数

if vote not inclassCount.keys():

classCount[vote]=0

classCount[vote]+= 1sortedClassCount= sorted(classCount.items(), key = operator.itemgetter(1), reverse = True)#根据字典的值降序排序

return sortedClassCount[0][0]#返回classList中出现次数最多的元素

"""Parameters:

dataSet - 训练数据集

labels - 分类属性标签

featLabels - 存储选择的最优特征标签

Returns:

myTree - 决策树"""

#函数说明:创建决策树

defcreateTree(dataSet, labels, featLabels):

classList= [example[-1] for example in dataSet] #取分类标签(是否放贷:yes or no)

if classList.count(classList[0]) == len(classList): #如果类别完全相同则停止继续划分

returnclassList[0]if len(dataSet[0]) == 1: #遍历完所有特征时返回出现次数最多的类标签

returnmajorityCnt(classList)

bestFeat= chooseBestFeatureToSplit(dataSet) #选择最优特征

bestFeatLabel = labels[bestFeat] #最优特征的标签

featLabels.append(bestFeatLabel)

myTree= {bestFeatLabel:{}} #根据最优特征的标签生成树

del(labels[bestFeat]) #删除已经使用特征标签

featValues = [example[bestFeat] for example in dataSet]#得到训练集中所有最优特征的属性值

uniqueVals = set(featValues) #去掉重复的属性值

for value in uniqueVals: #遍历特征,创建决策树。

myTree[bestFeatLabel][value] =createTree(splitDataSet(dataSet, bestFeat, value), labels, featLabels)returnmyTreeif __name__ == '__main__':

dataSet, labels=createDataSet()

featLabels=[]

myTree=createTree(dataSet, labels, featLabels)print(myTree)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值