pytorch l2正则化_正则化概述

38e93eab3ea98e1f11ddcc6d41e82932.png

在本文中,我们将讨论正则化的必要性及其不同类型。

在监督机器学习模型中,我们将在训练数据上训练模型。模型将从这些数据中学习。在某些情况下,模型会从训练数据中的数据模式和噪声中学习,在这种情况下,我们的模型将有一个高方差,我们的模型将被过度拟合。这种过拟合模型泛化程度较低。这意味着他们会在训练数据方面表现良好,但在新数据方面表现不佳。我们的机器学习算法的目标是学习数据模式并忽略数据集中的噪声。

在训练数据上避免模型过度拟合的方法有交叉验证、特征约简、正则化等。

随着模型复杂性的增加,正则化基本上增加了惩罚。正则化参数(λ)惩罚除截距之外的所有参数,以便模型泛化数据并且不会过度拟合。

让我们了解惩罚性损失函数如何帮助避免过度拟合

我们将以线性回归的形式解释正则化。线性回归的成本函数是

1fe8f090085659d434337dccd61b414e.png

我们的目标是最小化成本函数J(θ0,θ1)。

aab61e68205fdf1312439170e81ad8b4.png

假设如下

f721e2dd2b3a42e90e720f13323758dd.png

我们想要消除θ2,θ3,θ4等参数的影响,而不是实际摆脱这些特征或改变我们假设的形式,我们可以改为修改我们的成本函数。这里让我们修改θ3和θ4的影响。

8763e3219aa1ea5a3623889bb4cf4705.png

现在,为了使成本函数接近零,我们必须将θ3θ4的值减小到接近零。这又会在我们的假设函数中降低θ3 X 3³和θ4 X4⁴的值

3ec50aaa8218c1d3730615f9b4a7a83e.png

这意味着θ3,θ4等较小的参数值,假设将更简单,模型将不再那么容易过度拟合。

考虑具有大量特征(x1,x2,x3 ...... .x100)的情况。然后我们将有大量参数(θ1,θ2......θ100)。在这种情况下,我们可以通过使用正则化来做同样的事情。为此,我们将为我们的成本函数添加一个新的正则化项。

1982ca164baef2231fd8573e981f7dc4.png

这里λ正则化参数。在这里,我们必须最小化J(θ)随着正则化参数值的增大,系数值减小,方差减小,而不会丢失数据中的重要特征。

如果我们选择更高的λ值应该如何处理?

对于更高的λ算法甚至不拟合训练数据并导致拟合。梯度下降也不会收敛。像θ1,θ2...θn这样的参数变得接近零。然后

7f9112c258e1669a351ad10f9a2d6a08.png

如何选择λ的正确值呢?

它将介于0和较大值之间。我们需要找到λ的最佳值,以便泛化误差很小。我们可以使用像k-fold交叉验证这样的方法。

正则化的类型

正则化主要有两种类型。

  1. L1正则化(Lasso正则化)
  2. L2正则化(Ridge正则化)

L1正则化(Lasso回归)

L1正则化加L1罚值等于系数绝对值。当我们的输入特征的权重接近于零时,就会产生稀疏的L1范数。在稀疏解中,大多数输入特征的权值为零,只有极少数特征的权值为非零。

7886420a8756921092a1fbea3ebdddf4.png

特征:

  • L1惩罚权重的绝对值之和。
  • L1有一个稀疏解
  • L1生成的模型简单且可解释,但不能学习复杂的模式
  • L1对异常值具有鲁棒性

L2正则化(Ridge正则化)

L2正则化类似于L1正则化。但它将系数的平方量作为惩罚项加到损失函数上。L2不会产生稀疏模型,并且所有系数都会被同一因子缩小(没有像L1回归那样被消除)

d9a7960de8bc0b844e6c132ea0a2d45c.png

特征:

  • L2正则化惩罚平方权重之和。
  • L2有一个非稀疏解
  • L2正则化能够学习复杂的数据模式
  • L2没有特征选择
  • L2对异常值不太好

这些技术之间的关键区别在于,L1回归将不太重要的特征系数缩小为零,从而完全删除某些特征,而L2回归将其减少到接近零。因此,如果我们有大量的特征,L1回归可以很好地用于特征选择。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值