自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(113)
  • 资源 (1)
  • 收藏
  • 关注

原创 Contextual Augmented Global Contrast for Multimodal Intent Recognition

提出了一种上下文增强全局对比(CAGC)方法。CAGC 包括两个主要部分:上下文增强转换器 (CAT) 模块和全局上下文引导对比学习 (GCCL) 方案。主要想法是探索丰富而全面的上下文特征,以解决意图识别中的不确定性问题。CAT 的目的是通过同时挖掘视频内和跨视频的上下文关系来学习精炼的全局上下文相关特征,从而减少意图理解中的偏差。为了确保有效的跨视频来源,作者进一步设计了一个跨视频库,该库同时考虑了视频间的意图倾向和相似性。该库可以帮助模型避免和减轻无关视频带来的错误积累,从而确保更精确的跨视频上下文特

2024-10-30 11:29:34 1071

原创 Hierarchical Supervised Contrastive Learning for Multimodal Sentiment Analysis

将监督对比学习(SCL)引入 MSA 任务,提出了一种层次化监督对比学习方法(HSCL),以对齐来自不同模态的内容,包括单模态表征和双模态融合特征。同时,使用标签来约束对齐的表征,以保留丰富的情感语义。引入了有监督的对比学习,并提出了一种分层训练策略,即从低层和高层特征表征中捕捉情感。设计了self-attention和cross-attention模块,以融合来自不同模态数据的表征,从而提供更有效的情感内容。结果表明,HSCL 在两个公开的多模态情感分析数据集上取得了最先进的性能。

2024-10-30 11:22:16 817

原创 CLGSI: A Multimodal Sentiment Analysis Framework based on Contrastive Learning Guided by Sentiment I

提出了一种基于情感强度引导的对比学习(CLGSI)的多模态情感分析新框架:提出了以情感强度为导向的对比学习方法。在对比学习中,根据情感强度差异选择正负样本对,并相应地分配权重。这就为对比学习过程提供了丰富的细粒度信息。提出了一种模仿人类认知过程的多模态表征融合机制——全局-局部-细粒度-知识(GLFK)。利用 GLFK 机制融合通过对比学习训练获得的各模态表征,以提取不同模态的共性特征。同时,使用 MLP 处理每个模态编码器的输出,提取每个模态的特定特征。最后,通过共性特征和特定特征的联合学习来预测情感强度

2024-10-30 11:16:17 1098

原创 利用Optuna对PyTorch模型进行自动调参

利用Optuna对PyTorch模型进行自动调参 1. Optuna安装 2. Optuna使用流程 3. 超参数采样的搜索空间 4. 优化算法 4.1 采样算法 4.2 切换采样器 4.3 剪枝算法 4.4 激活 Pruner 5. Optuna Dashboard的使用 5.1 Optuna Dashboard安装 5.2 使用流程 6. 案例一:使用 Optuna 的 XGBoost 模型调参(Scikit-Learn框架) 7. 案例二:使用 Optuna 的 MLP 神经网络调参(Pytorch框

2024-10-24 17:48:06 1650

原创 深度学习超参数调优指南

一、超参数相关基础知识 1. 神经网络中包含哪些超参数 2. 超参数的重要性顺序 3. 部分超参数如何影响模型性能 4. 部分超参数合适的范围 二、超参数调整技巧 1. 如何选择激活函数 2. 如何调整 Batch Size 3. 如何调整学习率 三、自动调参方法 1. 网格搜索与随机搜索 2. 贝叶斯优化 四、调试模型技巧 1. 探索和清洗数据 2. 探索模型结果 3. 监控训练和验证误差

2024-10-24 17:33:17 2102

原创 深度学习调参技巧总结

1.寻找合适的学习率 2.优化算法选择 3.模型对不同超参数的敏感性 4.训练技巧.虽然 Adam 收敛更快,但得到的解往往不如 SGD+Momentum 稳定,如果不急于求成,选择 SGD 可能是更好的选择。Adam 不需要频繁调整学习率,而 SGD 则需要更多时间来调节学习率和初始权重。常用的超参数优化方法有:手动优化、网格搜索、随机搜索、由粗到细、贝叶斯优化。采用较大的batch-size,只要不超出显存就可以。越大的batch-size使用越大的学习率,反之亦然。

2024-10-15 19:50:21 806

原创 修改Anaconda虚拟环境默认安装路径(Linux系统)

1.方法一:使用`--prefix`参数.在创建虚拟环境时,使用`--prefix`参数来指定虚拟环境的位置,但是在激活环境以及删除环境时,也需要使用`--prefix`参数来指明环境的位置所在。2.方法二:配置conda环境的默认安装位置.通过`conda info`查看conda的配置文件所在位置。`.condarc`文件一般位于用户目录下。修改`.condarc`配置文件。在配置文件中使用`envs_dirs和pkgs_dirs`来指定环境和python包的安装路径。

2024-10-05 20:57:12 1268

原创 Ubuntu开机进入紧急模式处理

Ubuntu开机不能够正常启动,自动进入紧急模式(You are in emergency mode)。1.按Ctrl+D进入到单用户模式下,输入root密码,回车。(输入密码时无显示)2.命令行输入`journalctl -xb`查看日志。3.在日志界面通过`/ fsck failed`来查找相关的错误磁盘4.卸载磁盘。5.修复磁盘。6.`reboot`重启系统。

2024-09-30 16:28:46 2247 1

原创 Hybrid Contrastive Learning of Tri-Modal Representation for Multimodal Sentiment Analysis

在多模态情感分析领域,以往的大多数研究都侧重于探索模态内和模态间的交互。然而,由于模态之间的差距,利用跨模态信息(语言、音频和视频)训练网络仍然具有挑战性。此外,虽然每个样本内的动态学习备受关注,但样本间和类间关系的学习却被忽视。(如何学习到多模态数据有意义的表征?)作者提出了一种新型框架 HyCon,用于三模态表征的混合对比学习。具体来说,同时进行模态内、模态间对比学习和半对比学习,这样模型就能充分探索跨模态交互,学习样本间和类间关系,缩小模态差距。此外,还引入了细化项和模态边界,以便更好地学习单模态配对

2024-09-23 16:40:51 865

原创 如何使用Pytorch-Metric-Learning?

PyTorch-Metric-Learning 是一个基于 PyTorch 的开源库,专门用于度量学习(Metric Learning)的实现和研究。度量学习是一类机器学习任务,旨在学习一个距离函数,使得相似的样本在特征空间中靠得更近,而不相似的样本更远。该库包含9个模块(可用模块概览,点击查看),每个模块都可在现有的代码库中独立使用,或者组合起来完成完整的训练和测试工作流。1.Pytorch-Metric-Learning库9个模块的功能2.如何使用PyTorch Metric Learning库中的Lo

2024-09-08 15:43:19 1332

原创 torch.sort()函数用法

torch.sort()按值升序沿给定维度对输`dim(int,optional)`:要排序的维度。如果未给出`dim`,则选择输入的最后一个维度。入张量的元素进行排序。`input(Tensor)`:输入张量`descending(bool,optional)`:控制排序顺序(升序或降序)。如果`descending`为True,则元素按值降序排序。返回(值,索引)的元祖 (values, indices) ,其中值是排序后的值,索引是原始输入张量中元素的索引。

2024-08-29 18:24:36 411

原创 MathType常见问题汇总

MathType常见问题汇总 一、如何将MathType内嵌到WPS工具栏中? 二、在word中,如何批量修改所有MathType公式的字体以及大小格式? 三、如何解决插入MathType公式后的行间距发生改变?

2024-08-27 22:59:13 2838

原创 Java关键字及保留字总结

Java的48个关键字及2个保留字总结,1.abstract 2.boolean 3.break 4.byte 5.case 6.catch 7.char 8.class 9.continue 10.default 11.do 12.double 13.else 14.enum 15.extends 16.final 17.finally 18.float 19.for 20.if 21.implements 22.import 23.instanceof 24.int 25.interface

2024-08-02 12:11:28 1067

原创 PyTorch实现L1和L2正则化

1.L1正则化与L2正则化介绍 2.利用torch.optim实现正则化 3.利用torch.optim实现正则化进阶(建议使用👏) 4.方法一:直接在loss后面加对应的惩罚项 4.1 L1正则化实现思路 4.2 L2正则化实现思路 5.方法二:通过封装一个正则化类实现正则化 5.1 封装一个实现正则化的Regularization类 5.2 利用Regularization类添加正则化

2024-07-27 20:21:33 1382

原创 从零开始搭建一个PyTorch模型

为了更好的理解PyTorch模型的架构,本文使用手写数字识别的例子,从零开始一步步搭建一个标准的前馈神经网络。1.神经网络的搭建思路?2.模型搭建流程2.1加载数据集2.2定义模型(搭建网络结构)2.3创建三个对象(模型本身、优化器、损失函数)2.4模型训练2.5模型测试3.手写数字识别可执行代码

2024-07-24 18:10:58 1098 1

原创 torch.manual seed(3407) is all you need

作者尝试探究不同的随机种子对CV领域模型效果的影响。在CIFAR 10数据集尝试了将近一万个随机种子,包括在大型数据集ImageNet数据集上的一些随机种子后,最后得出结论:尽管不同随机种子之间的效果标准差很小,但是仍然能够发现一些“异常点”,也就是使得模型表现相较于平均值特别好或者特别差的随机种子。深度学习模型随机种子seed推荐:42、3407、114514。

2024-07-22 21:47:57 739

原创 深度学习损失计算

1.如何计算当前epoch的损失?2.为什么要计算样本平均损失,而不是计算批次平均损失?计算当前epoch的样本平均损失。通过总损失除以总的数据样本数,来得到平均损失。`average_loss = loss/len(dataloader.dataset)`【注意:除的是总的数据样本数(`len(dataloader.dataset)`)!不是总的批次数(`len(dataloader)`)!】

2024-07-16 21:01:18 977

原创 深度学习调参基础

深度学习调参基础 1.需要调节的超参数有哪些? 2.什么时候需要调参? 3.如何调参? 3.1过拟合情况调参 3.2欠拟合情况调参 3.3收敛但震荡情况调参 3.4不收敛情况调参 4.调参示例 需要调节的超参数有哪些?和网络结构相关的参数:神经网络的网络层数、不同层的类别和搭建顺序、隐藏层神经元的参数设置、LOSS层的选择、正则化参数;和训练过程相关的参数:网络权重初始化方法、学习率使用策略、迭代次数、Batch的大小、输入数据相关。

2024-07-10 21:52:18 1367

原创 TensorBoard进阶

1.设置TensorBoard(重点✅)2.图像数据在TensorBoard中可视化3.模型结构在TensorBoard中可视化(重点✅)4.高维数据在TensorBoard中低维可视化5.利用TensorBoard跟踪模型的训练过程(重点✅)6.利用TensorBoard给每个类绘制PR曲线7.在TensorBoard中绘制训练与验证损失对比曲线(重点✅)8.TensorBoard的跟踪参数曲线图线条紊乱的解决办法(重点✅)9.TensorBoard中通过分层命名图避免UI混乱

2024-07-05 16:09:52 1157

原创 在PyTorch中使用TensorBoard

在机器学习中,要改进模型的某些参数,我们通常需要对其进行衡量。TensorBoard是用于提供机器学习工作流期间所需测量和呈现的工具。它使我们能够跟踪实验指标(例如损失和准确率),呈现模型计算图,将嵌入向量投影到较低维度的空间等。在PyTorch中使用TensorBoard:1.安装2.TensorBoard使用2.1创建SummaryWriter实例2.2利用add_scalar()记录metrics2.3关闭Writer2.4启动TensorBoard3.本地连接服务器使用TensorBoard

2024-07-05 16:01:35 2574

原创 深度学习归一化与正则化

归一化(Normalization) 定义:归一化是指通过某种算法将输入数据或神经网络层的激活值处理后限制在我们需要的特定范围内。它的目的是为了方便后续的数据处理,并加快程序的收敛速度。归一化的主要作用是统一样本的统计分布。在0到1之间的归一化代表的是概率分布,而在其他区间内的归一化则表示的是坐标分布。正则化(Regularization)定义:正则化是指为解决适定性问题或过拟合而加入额外信息的过程。在机器学习和逆问题的优化过程中,正则项往往被加在目标函数当中。

2024-06-20 17:43:24 693 1

原创 根据模型log文件画loss曲线

思想:使用Python的matplotlib库来绘制loss曲线。首先需要解析log文件,提取出每个epoch对应的loss值,然后再进行绘制。1.初始化两个空列表epochs和losses,用于存储epoch和loss值。2.打开并读取log文件,每次读取一行。3.使用正则表达式查找并提取每行中的epoch和loss值,并分别添加到epochs和losses列表中。4.使用matplotlib绘制loss曲线,其中epochs作为x轴,losses作为y轴,并设置合适的标签和标题。

2024-06-20 12:29:11 349

原创 Linux服务器挖矿病毒处理

情况说明:挖矿进程被隐藏(CPU占用50%,htop/top却看不到异常进程),结束挖矿进程后马上又会运行起来(crontab -l查看发现没有定时任务)。1.中毒表现 2.解决办法:断网并修改root密码,找出隐藏的挖矿进程,关闭病毒启动服务,杀掉挖矿进程 3. 防止黑客再次入侵:查找异常IP,封禁异常IP,查看是否有陌生公钥。中毒表现:服务器是24核的,前12核的CPU占用一直处于100%,即使重启服务器,马上就会占用12核的CPU,并且系统内存占用也很大。在没有使用软件的情况下,CPU使用率很高。

2024-06-19 20:58:40 2777

原创 An efficient multimodal sentiment analysis in social media using hybrid optimal multi-scale residual

EMRA-Net:利用混合优化多尺度残差注意力网络在社交媒体中进行高效的多模态情感分析。总结:提出一种使用 AOA-HGS 优化的集成多尺度残差注意力网络 EMRA-Net,来探索文本、语音、和视觉模态之间的相关性,从而进行了更有效的多模态情感分析。优点:在提出的模型中,对三种模态(文本、语音和视频)给予同等重视。缺点:将特征融合起来输入,得到的三种模态特征是否具备足够的特性。作者:Bairavel Subbaiah,Kanipriya Murugesan。单位:KCG技术学院(印度)

2024-06-07 18:24:04 1152

原创 A Unified Self-Distillation Framework for Multimodal Sentiment Analysis with Uncertain Missing Modal

UMDF:用于具有不确定缺失模态的多模态情感分析的统一自馏框架。总结:提出的UMDF框架解决了MSA任务中的缺失模态问题。UMDF通过蒸馏式分布监督和基于注意力的多粒度交互,产生了鲁棒的联合多模态表征。作者:Mingcheng Li,Dingkang Yang,Lihua Zhang。单位:复旦大学工程技术研究院、认知与智能技术实验室(CIT 实验室)。会议/期刊:The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI 2024)

2024-06-07 18:02:51 1172 1

原创 Sentiment Knowledge Enhanced Self-supervised Learning for Multimodal Sentiment Analysis

SKESL:多模态情感分析中的情感知识增强型自监督学习。总结:从未标注的视频数据中挖掘情感先验信息可以为标注数据带来更好的预测效果。未标记视频数据量越大,语言建模能力越强,性能越好。(自监督学习,扩大数据集)作者:Fan Qian,Jiqing Han。单位:Harbin Institute of Technology(哈尔滨工业大学)。会议/期刊:Findings of the Association for Computational Linguistics: ACL 2023

2024-06-07 17:48:26 1365 3

原创 Pycharm导入自定义模块报红

Pycharm 导入自定义模块报红,出现红色下划线。打开【File】->【Setting】->【Build,Execution,Deployment】->【Console】->【Python Console】,查看 Add Source Roots to PYTHONPATH 是否勾选,如果没有请勾选。选中波浪线标红的项目文件夹,右键,【Mark Directory as】–>【Sources Root】注意:一个项目下面如果有多个文件夹,我们只将最顶部的文件夹Sources Root 一下就可以了。

2024-05-07 18:04:32 1999 1

原创 PyTorch如何修改模型(魔改)

对模型缝缝补补、修修改改,是我们必须要掌握的技能,本文详细介绍了如何修改PyTorch模型?也就是我们经常说的如何魔改。PyTorch 的模型是一个 torch.nn.Module 的某个子类的对象,修改模型实际就等价于修改某个类,对面向对象熟悉的同学应该知道,对类做修改有两个经典的方法:组合和继承。1.修改模型层(模型框架⭐)1.1通过继承修改模型1.2通过组合修改模型(重点学👀)1.3通过猴子补丁修改模型2.添加外部输入3.添加额外输出。

2024-04-29 12:16:37 3187 7

原创 Leave No Context Behind: Efficient Infinite Context Transformers with Infini-attention

Infini-Transformer model 是一个强大而通用的Transformer模型,设计用于广泛的自然语言处理任务。它利用最先进的技术和架构来实现卓越的性能和无限上下文长度的可伸缩性。 Infini-attention 将压缩内存融入到普通的注意力机制中,使得 LLMs 能够以有界的内存和计算资源处理无限长的上下文。

2024-04-26 16:03:23 1244

原创 Git教程 - 快速上手指南

Git教程-快速上手指南。1.安装2.Git环境配置3.Git搭建本地仓库4.Git基本工作流5.Git分支6.`.gitignore 文件`7.在PyCharm/Idea中集成使用8.Git-快速查阅工具。Git是一个免费的开源分布式版本控制系统,旨在快速高效地处理从小到非常大的项目。Git简单易学,占地面积小,性能快如闪电。它远胜于Subversion、CVS、Perforce和ClearCase等SCM工具,具有廉价的本地分支、方便的暂存区和多个工作流等特性。

2024-04-20 20:37:50 1314

原创 Git - 在PyCharm/Idea中集成使用Git

Git - 在PyCharm/Idea中集成使用Git:新建GitHub仓库,将仓库与项目绑定,在PyCharm中使用Git,新建Gitee仓库,将仓库与项目绑定,在IDEA中使用Git。本文详细讲解了如何在 PyCharm 或 Idea 中配置 Gitee 或 GitHub 仓库,并如何使用 Git 实现版本控制。针对上述需求,实现了在 PyCharm 中与 GitHub 绑定实现 Git 操作,在 Idea 中与 Gitee 绑定实现 Git 操作。

2024-04-20 20:25:49 707

原创 Git - 如何配置.gitignore文件?

在使用Git的时候,我们总会遇到不想要提交的文件或者文件夹,这时我们便可以通过配置.gitignore文件来让Git忽略我们项目中相应的文件或者文件夹。我们不需要从头开始写.gitignore文件,因为GitHub已经为我们准备了各种配置文件(GitHub的.gitignore配置文件),我们只需要按照自己的需求更改一下就可以使用了。注意:.gitignore文件的位置应该位于项目的根路径下面!!!

2024-04-19 20:22:26 1832

原创 AI 编程助手汇总

本文介绍了几种AI编程助手,旨在提升编程效率。包括Baidu Comate(推荐) 、阿里通义灵码、清华CodeGeeX、Amazon CodeWhisperer、GitHub Copilot、codeium。讲述了GitHub如何进行双重身份验证,并且给出了详细的教程。针对GitHub的学生认证申请进行了探究,但是目前,我结合了网上大量的资料,发现认证根本提交不上去,也不知道是什么原因,期待大家对该问题的解决,欢迎评论区留言。

2024-04-15 21:29:04 708

原创 PyTorch Scheduler动态调整学习率

深度学习中长久以来一直存在一个令人困扰的问题,那就是如何选择适当的学习率。如果学习速率设置得过小,会导致模型收敛速度缓慢,训练时间延长;而如果学习率设置得太大,可能会导致参数在最优解附近来回波动。然而,即使我们选定了一个合适的学习率,在经过多轮训练后,仍可能出现准确率的震荡或损失不再下降等情况,这表明当前的学习率已经不能满足模型调优的需求。在这种情况下,我们可以采用适当的学习率衰减策略来改善模型的性能,从而提高精度。这种策略在PyTorch中被称为调度器(scheduler)。

2024-04-15 10:52:34 1050

原创 Linux硬件管理

Linux硬件管理。1.查看磁盘空间 df -h。2.查看当前路径下,所有文件的磁盘占用空间,并从大到小排序(清理磁盘空间找大文件) du -ah --max-depth=1 |sort -rh。。3.查看系统内存占用情况 htop 或 free -h。

2024-04-13 21:10:19 1082

原创 PyCharm与Idea常用设置

1.如何在PyCharm/Idea中快捷放大和缩小代码界面?2.如何在PyCharm中设置.py文件的开头注释?3.如何在Idea中设置.java文件的开头注释?4.如何利用PyCharm对比两个文件的代码?5.PyCharm调试时,如何查看完整张量数据?6.Idea注释如何切换渲染视图?

2024-04-12 18:04:21 3622 1

原创 Shell快捷键大全

Shell快捷键大全,删除一整行:Ctrl + U,删除光标之前的内容;Ctrl + K,删除光标之后的内容

2024-04-02 23:09:21 1465 1

原创 from_pretrained()方法加载本地模型时报错:huggingface_hub.utils._validators.HFValidationError

在使用`from_pretrained()`方法加载本地预训练模型的权重时,发生下面的错误:huggingface_hub.utils._validators.HFValidationError: Repo id must be in the form 'repo_name' or 'namespace/repo_name': '../../MMSA/pretrained_berts/bert_cn'. Use `repo_type` argument if needed.

2024-04-02 22:11:23 3027 3

原创 OSError: Can‘t load tokenizer for ‘bert-base-chinese‘

使用`from_pretrained()`函数从预训练的权重中加载模型时报错:OSError: Can't load tokenizer for 'bert-base-chinese'. If you were trying to load it from 'https://huggingface.co/models', make sure you don't have a local directory with the same name.

2024-04-02 21:53:24 9846 14

原创 关于深度学习的 PyTorch 项目如何上手分析?从什么地方切入?

当我们拿到一个 PyTorch 的深度学习项目时,应该怎么入手?怎么去查看代码?首先阅读对应项目的 `README.md` 文件。通过观察项目中文件、文件夹的命名,对每个文件的功能有一个初步的判断。分析模型的结构。查看模型的数据处理操作(可选)。查看模型的训练过程。查看模型的评估(测试)过程。查看模型的参数配置。通过上面的分析,项目的核心我们就掌握了,接下来就可以尝试运行项目的 `train.py` 和`test.py` ,对项目进行训练和评估,并观察模型的训练过程和性能表现。

2024-03-29 19:22:50 1151 1

PyTorch 教程-快速上手指南,对应代码实现

PyTorch 教程-快速上手指南,对应代码实现

2024-03-27

tensorflow1.0版本环境直接导入

tensorflow1.0版本环境直接导入

2023-09-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除