matlab小波变换频率确定_希尔伯特黄变换理论上的研究—相关问题的讨论

相关问题的讨论

在以上几节中,我们探讨了内在模分量本质和局部窄带信号的联系,也提出了将具有自适应变化参数的时变滤波器作为经验模态分解的实现方式,比较完整的建立和完善了希尔伯特黄变换的理论基础和理论体系。因而可以比较深入和更加准确的探讨理论上和实践上的一些相关问题。

石显:希尔伯特黄变换理论上的研究—内在模分量IMF的本质​zhuanlan.zhihu.com

1关于第五个难点的解释与最小窗尺度

在3.1.4节中已经说明了希尔伯特时频分析能够适用于局部窄带信号,而且根据Hilbert的线性性质和Bedrosian乘积定理,可以简单的证明:对局部窄带信号进行希尔伯特时频分析,定义和求解瞬时频率能够很好的解决前四个矛盾(难点)。事实上3.1.3节中提到的几类信号都不满足局部窄带信号或者窄带信号的要求,从而导致了无法应用希尔伯特时频分析方法。

在先前关于第五个难点的讨论中认为,如果要求解信号x(t)在t1时刻的

瞬时频率,并不需要知道t1时刻之后的数据。现实中处理的数据不可能从

T=-∞初开始记录,一般的从某个特殊的时间点t=t0开始,从而在希尔伯特

时频分析中,希尔伯特变换的积分上下限可以修改成[t0,t1],即

b89c282aa284bf4af9e49efafe14c732.png

c7598cd4c4a7eb25371f95ec36c402ac.png

上述讨论表明,在希尔伯特时频分析理论中,由于瞬时频率是存在且唯一确定的,只要最后能够得到合理的结果,可以对信号x(t)的数据进行截短处理。这一个结论对于减小希尔伯特谱分析的运算量是非常有利的,有时候我们并不需要求解整个信号长度上各点的瞬时频率,而只对少数几个点的局部特性感兴趣,那么可以对这个信号分解后的单分量信号(比如内在模分量IMF)进行截断处理,只对这些点周围的数据进行希尔伯特积分运算,从而大大减少数据运算的次数。关于最小窗尺度的要求也表明,作为局部窄带信号的IMF至少应该持续一个周期的长度,因而必须包含三个极值点,这一点构成了在EMD算法中判断分解完成的一个准则(判断残余信号是不是可以继续分解)。此外截短的希尔伯特谱分析同人耳的听觉模型有着很大程度的相似,因此可以用于语音信号处理的相关领域。

说明:实际上,半个信号周期也基本上能够满足Hilberi变换的要求,所以可以将信号对极值点数目的最小要求修改为两个,这是理论上的结果,还需要具体的EMD算法和实验来证明。

2边界处理/端点延拓问题处理

在3.4.1节中认为对局部窄带信号进行希尔伯特时频分析,要求信号的最小长度要大于一个最小周期的长度,也就表明运用希尔伯特黄变换对信号进行分析,信号上的任一点都应该包含在一个相邻尺度内。

在黄最初提出的希尔伯特黄变换理论中,经验模态分解是通过包络拟合的方法实现的(2.3.1节),而且包络拟合的主要依据是信号的极大值点和极小值点。这样对于信号在边界部分的点,就不能够被一个最小周期尺度所包含,因此必须进行端点沿拓。

c337095f17f7f640b3b1c28088adf2bf.png

最近几年关于希尔伯特黄变换的理论研究成果中,关于边界效应(端点延拓处理)又提出了包括特征波延拓、镜像/对称延拓、全局统计平均法、平行线段延拓、多项式拟合以及神经网络预测、小波一卡尔曼滤波预测等新方法,在端点处能够很好的进行包络拟合从而解决端点效应。然而这些方法都是基于信号在边界处是短时平稳这一重要假设的,因此,当信号不满足这一条件,或者在边界处短时平稳性比较差时,很难找到一种合理的普遍的边界延拓方法。在经验模态分解过程中,随着分解的继续(分解层数的增加),局部尺度变长,端点处的短时平稳性很难得到保证,而且考虑到在小尺度分解造成的边界效应会影响到大尺度分解的效果,因而边界效应更加容易影响或者污染处于低频段的IMF,这与我们实验的结果是一致的。

为了更好的解决边界效应,应当对实验数据进行预处理。在对语音信号和振动信号的处理技术中,通常的做法是检测信号边界,截取我们感兴趣的时间片断;同时进行加窗(分帧)处理(平滑窗的效果更好),使得信号在边界满足短时平稳特性,或者在边界处的能量收敛为0。这样,可以保证运用端点延拓技术的合理性,减小边界效应;另外,即使仍然存在边界效应,由于边界处的能量极小,对于信号处理也不会造成严重的影响。

3关于经验模态分解的频率分辨率

e8cc7cb70918f3a31226e6ca715773e1.png

关于这一点可以做这样的解释,长期以来我们对信号模型的认识都是通过傅立叶变换实现的,而傅立叶变化的基础是三角函数(比如说余弦信号),从而使我们相信自然界中所有信号模型都是若干个余弦信号的叠加。事实上,这一观点束缚了我们对自然界中信号的理解。现实世界的许多信号(比如像音频信号)用AM-FM(调频调幅信号)建立模型更加合理。而这个调频调幅信号在通常情况下满足窄带信号的要求。在某些情况下,经验模态分解的频率分辨率要弱于傅立叶分析,但是它能够合理的将信号分解成内在模分量之和的形式,从而清楚的得到信号的时频分析表示,这对于我们认识和了解世界,分析和建立信号的模型是非常有利的。

说明:在国外的有关论文中提到了运用屏蔽信号(maskingsignal)的方法提高EMD分解的分辨率,实现将两个接近的频率分离出来。相关资料可以参考有关论文,在此不再赘述。

83619357b9f0d9f54049cd2633cbeaad.png

7cf005dec1f11989d1b3747b513691e0.png

4经验模态分解的正交性

关于经验模态分解的正交性,对于希尔伯特黄变换理论的建立是一个至关重要的问题。它的正交性是从算法上表示的,没有理论上的证明,因而被它的反对者用来攻击希尔伯特黄变换理论。下面我们基于3.1节和3.2节的讨论从理论上给出关于EMD正交性的证明。

首先我们讨论一下经验模态分解的基函数问题。对于傅立叶变换或者傅立叶分析它的基函数是三角函数,因而具有明显的正交性;对于小波分解,它的基函数是变尺度的小波函数,它具有时域上的紧支撑特性和频域上的带通特性,有关的文献己经证明了不同尺度和不同位移的小波函数是正交的;那么对于经验模态分解,它的基函数是什么,是否具有正交性。

63fa54987a6338433a9e7868bb27669f.png

0d28c3b0982ae95aaf1d87847f07ec98.png

至此,基于3.1节和3.2节的讨论,我们从理论上证明了经验模态分解方法的正交特性,而且指出,EMD设计的越完善,信号数据点数越大,就能够更严格的实现正交特性。

5希尔伯特黄变换与小波变换的关系

前面的讨论表明EMD分解的本质是具有时变参数的自适应(时变)滤波器,它在时间轴上滑动,根据信号的局部特征点或者局部尺度对信号进行自适应的窄带滤波。3.4.4节中认为经验模态分解的基函数是加窗的窄带信号(从而具有紧支撑特性)。而对于小波的有关研究表明小波分解以及小波函数从频域看是多尺度的窄带滤波器网。

因此EMD分解和小波分解从本质上是一致的,都是作为窄带滤波器。不同的是在EMD分解中滤波器的参数不仅随着分解层数变化,而且随着时间(局部)尺度变化。而小波滤波器的参数只随着分解层数变化(一旦选定小波基,这种变化只体现在滤波器的窗口大小上,对于滤波器的形状没有影响)。

对于比较常用的二进小波,小波滤波器只对应了离散个二进尺度,这些尺度未必能够很好的适应,或者跟随信号的(局部)尺度变化。而且EMD分解的滤波器具有更好的平坦性和截止特性,因此对信号波形有着更好的适应性;小波变换要求根据不同的信号波形确定不同的小波基,但是即使对于同一个信号,对于不同的分解层数和不同的局部波形,也可能需要不同的小波基,因此小波基不具有自适应特性,这一点是小波变换最致命的一个缺点。

根据上述讨论,可以推出以下结论:(l)如果有足够的先验知识,确认某个小波基对信号的各个尺度(层)和各个局部均适应或者最佳匹配(全局最佳),那么可以利用小波分解实现EMD分解。(2)对小波分解结果的分析可以不通过FFT等基于傅立叶变换的信号分析方法,同样可以应用希尔伯特时频分析方法,近似的得到具有实际意义的瞬时频率和瞬时频幅表示。(3)二进小波变换也存在类似3.4.3关于分解的频率分辨率问题。这几个结论还有待更多的实验证明和更深层次的探讨。

说明:事实上,迄今为止的研究并没有给出关于EMD分解对应的最佳(理想)滤波器的具体实现形式,在这里姑且认为是根据局部尺度自适应变化的具有平坦性和截止特性的窄带滤波器。

《来源科技文献,经本人分析整理,以技术会友,广交天下朋友》

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值