flink入门_Flink流处理API代码详解,Source、Transform、Sink,Flink学习入门(二)

d2fc319406df4638fe639fc39267a9ba.png
❝ 大家好,我是后来,我会分享我在学习和工作中遇到的点滴,希望有机会我的某篇文章能够对你有所帮助,所有的文章都会在公众号首发,欢迎大家关注我的公众号" 「后来X大数据」 ",感谢你的支持与认可。

又是一周没更文了,上周末回运城看牙去了,一直都在路上,太累了。说回正题,关于flink的入门在上一篇已经讲过了。

今天主要说一下关于「流处理的API」,这一篇所有的代码都是scala。

那么我们还得回到上次的WordCount代码,Flink程序看起来像转换数据集合的常规程序。每个程序都包含相同的基本部分:

  1. 获得execution environment
  2. 加载/创建初始数据
  3. 指定对此数据的转换
  4. 指定将计算结果放在何处
  5. 触发程序执行

289a61712f1af87f43d723c7649eab0a.png

获取执行环境

所以要想处理数据,还得从获取执行环境来说起。「StreamExecutionEnvironment是所有Flink程序的基础」,所以我们来获取一个执行环境。有以下3种静态方法

  1. getExecutionEnvironment()
  2. createLocalEnvironment()
  3. createRemoteEnvironment(host: String, port: Int, jarFiles: String*)
//获取上下文环境
val contextEnv = StreamExecutionEnvironment.getExecutionEnvironment
//获取本地环境
val localEnv = StreamExecutionEnvironment.createLocalEnvironment(1)
//获取集群环境
val romoteEnv = StreamExecutionEnvironment.createRemoteEnvironment("bigdata101",3456,2,"/ce.jar")

但一般来说,我们只需要使用第一种getExecutionEnvironment(),因为「它将根据上下文执行正确的操作;」 也即是说,它会根据查询运行的方式决定返回什么样的运行环境,你是IDE执行,它会返回本地执行环境,如果你是集群执行,它会返回集群执行环境。

预定义的数据流源

好了,获取到环境之后,我们就开始获取数据源,flink自身是支持多数据源的,首先来看几个预定义的数据流源

  • 基于文件
  1. readTextFile(path)- TextInputFormat 逐行读取文本文件,并将其作为字符串返回,只读取一次。
  2. readFile(fileInputFormat, path) -根据「指定的文件输入格式」读取文件,只读取一次。

但事实上,上面的2个方法内部都是调用的readFile(fileInputFormat, path, watchType, interval, pathFilter, typeInfo) 我们来看看源码:

b3732209338a311ffbfdf30a0b6491b2.png

c9648ef820b009804ccf1a4e0c7c2004.png

我们选择其中第一个比较简单的方法进入,就看到了下图,发现其实上述的2种方法最终都会落到这个readFile(fileInputFormat, path, watchType, interval, pathFilter)方法上,只不过后面的参数都是默认值了。

b0b0978f10465cf146a4c4fc8b337e96.png

所以,这些参数当然也可以自己指定。好了,这个方法大家也不常用,所以就简单介绍下,有需要的小伙伴自己试试这些后面的参数。

  • 基于套接字 socketTextStream-「从套接字读取」。元素可以由定界符分隔。 这里提到了套接字,这个我在终于懂了TCP协议为什么是可靠的,计算机基础(六)之运输层是讲过的,这里再说一下: 套接字 socket = {IP地址 : 端口号},示例:192.168.1.99 :3456 代码使用如下:
val wordDS: DataStream[String] = contextEnv.socketTextStream("bigdata101",3456)

套接字是抽象的,只是为了表示TCP连接而存在。

  • 基于集合
  1. fromCollection(Seq)-从Java Java.util.Collection创建数据流。集合中的所有元素必须具有相同的类型。
  2. fromCollection(Iterator)-从迭代器创建数据流。该类指定迭代器返回的元素的数据类型。
  3. fromElements(elements: _*)-从给定的对象序列创建数据流。所有对象必须具有相同的类型。
  4. fromParallelCollection(SplittableIterator)-从迭代器并行创建数据流。该类指定迭代器返回的元素的数据类型。
  5. generateSequence(from, to) -并行生成给定间隔中的数字序列。

这些预设的数据源使用的也不是很多,可以说是几乎不用。所以大家可以自己尝试一下。 当然注意,如果使用 fromCollection(Seq),因为是从Java.util.Collection创建数据流,所以如果你是用scala编程,那么就需要「引入 隐式转换」

import org.apache.flink.streaming.api.scala._

获取数据源Source

大家也能发现,以上的方法几乎都是从一个固定的数据源中获取数据,适合自己测试,但在生产中肯定是不能使用的,所以我们来看看正儿八经的数据源: 官方支持的source与sink如下:

  1. 「Apache Kafka(源/接收器)」
  2. Apache Cassandra(接收器)
  3. Amazon Kinesis Streams(源/接收器)
  4. 「Elasticsearch(接收器)」
  5. 「Hadoop文件系统(接收器)」
  6. RabbitMQ(源/接收器)
  7. Apache NiFi(源/接收器)
  8. Twitter Streaming API(源)
  9. Google PubSub(源/接收器)

加粗的3个日常中比较常用的,那么也发现其实数据源只有kafka,sink有ES和HDFS,那么我们先来说说kafka Source,关于Kafka的安装部署这里就不讲了,自行Google。我们来贴代码与分析。

Kafka Source

  1. 在pom.xml中导入kafka依赖
<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-connector-kafka-0.11_2.11</artifactId>
  <version>1.7.2</version>
</dependency>

这里就涉及到了版本的问题:大家可以根据自己的版本进行调试。但是注意:目前flink 1.7版本开始,通用Kafka连接器被视为处于BETA状态,并且可能不如0.11连接器那么稳定。所以建议大家使用「flink-connector-kafka-0.11_2.11」

  1. 贴测试代码
import java.util.Properties
import org.apache.flink.api.common.serialization.SimpleStringSchema
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.connectors.kafka. FlinkKafkaConsumer011
import org.apache.flink.streaming.api.scala._

/**
  * @description: ${kafka Source测试}
  * @author: Liu Jun Jun
  * @create: 2020-06-10 10:56
  **/
object kafkaSource {

  def main(args: Array[String]): Unit = {
//获取执行环境
    val env = StreamExecutionEnvironment.getExecutionEnvironment

    val properties = new Properties()
    //配置kafka连接器
    properties.setProperty("bootstrap.servers", "bigdata101:9092")
    properties.setProperty("group.id", "test")
    //设置序列化方式
    properties.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
    properties.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
    //设置offset消费方式:可设置的参数为:earliest,latest,none
    properties.setProperty("auto.offset.reset", "latest")
    //earliest:当各分区下有已提交的offset时,从提交的offset开始消费;无提交的offset时,从头开始消费
    //latest:当各分区下有已提交的offset时,从提交的offset开始消费;无提交的offset时,消费新产生的该分区下的数据
    //none:topic各分区都存在已提交的offset时,从offset后开始消费;只要有一个分区不存在已提交的offset,则抛出异常

    val kafkaDS: DataStream[String] = env.addSource(
      new FlinkKafkaConsumer011[String](
        "test1",
        new SimpleStringSchema(),
        properties
      )
    )
    kafkaDS.print("测试:")
    env.execute("kafkaSource")
  }
}

31dbffe387a3ffb27219d37a0f9b0ce2.png

在这个里面,要注意的是消费offset的方式,3个参数的区别:

  1. 如果存在已经提交的offest时,不管设置为earliest 或者latest 都会从已经提交的offest处开始消费
  2. 「如果不存在已经提交的offest时,earliest 表示从头开始消费,latest 表示从最新的数据消费,也就是新产生的数据.」
  3. none :topic各分区都存在已提交的offset时,从提交的offest处开始消费;只要有一个分区不存在已提交的offset,则抛出异常

关于kafka序列化的设置这个需要根据实际的需求配置。

上面只是简单的使用Kafka作为了数据源获取到了数据,至于怎么做检查点以及精准一次性消费这类共性话题,我们之后单独拿出来再讲,这次先把基本的API过一下

Transform 算子

说完了Source,接下来就是Transform,这类的算子可以说是很多了,官网写的非常全,我把链接贴在这里,大家可以直接看官网:flink官网的转换算子介绍

而我们常用的也就是下面这些,功能能spark的算子可以说是几乎一样。所以我们简单看一下:

  1. Map 映射-----以元素为单位进行映射,会生成新的数据流;DataStream → DataStream
//输入单词转换为(word,1)
wordDS.map((_,1))
  1. FlatMap 压平,DataStream → DataStream
//输入的一行字符串按照空格切分单词
dataStream.flatMap(_.split(" "))
  1. Filter 过滤,DataStream → DataStream
//过滤出对2取余等于0的数字
dataStream.filter(_ % 2 == 0)
  1. KeyBy 分组
//计算wordCount,按照单词分组,这里的0指的是tuple的位数,因为(word,1)这类新的流,按照word分组,而word就是第0位
wordDS.map((_,1)).keyBy(0)
  1. reduce 聚合
//对上述KeyBy后的(word,count)做聚合,合并当前的元素和上次聚合的结果,实现了wordCount
wordDS.map((_,1)).keyBy(0).reduce{
      (s1,s2) =>{
        (s1._1,s1._2 + s2._2)
      }
    }

关于双流join与窗口的算子我在下一站会着重说,这一篇先了解一些常用的简单的API目的就达到了。

函数

在flink中,对数据处理,除了上述一些简单的转换算子外,还经常碰到一些无法通过上述算子解决的问题,于是就需要我们「自定义实现UDF函数」 关于UDF,UDTF,UDAF UDF:User Defined Function,用户自定义函数,一进一出 UDAF:User- Defined Aggregation Funcation 用户自定义聚合函数,多进一出 UDTF: User-Defined Table-Generating Functions,用户定义表生成函数,用来解决输入一行输出多行

UDF函数类

其实在我们常用的算子如map、filter等都暴露了对应的接口,可以自定义实现: 举例如map:

 val StuDS: DataStream[Stu] = kafkaDS.map(
 //在内部我们可以自定义实现MapFunction,从而实现类型的转换
      new MapFunction[ObjectNode, Stu]() {
        override def map(value: ObjectNode): Stu = {
          JSON.parseObject(value.get("value").toString, classOf[Stu])
        }
      }
    )

富函数Rich Functions

除了上述的函数外,使用多的就还有富函数Rich Functions,「所有Flink函数类都有其Rich版本。它与常规函数的不同在于,可以获取运行环境的上下文,并拥有一些生命周期方法,」 open,close,getRuntimeContext,和 setRuntimeContext,所以可以实现更复杂的功能,比如累加器和计算器等。

那我们来简单实现一个累加器

累加器是具有加法运算和最终累加结果的简单结构,可在作业结束后使用。最简单的累加器是一个计数器:您可以使用Accumulator.add(V value)方法将其递增 。在工作结束时,Flink将汇总(合并)所有部分结果并将结果发送给客户端。

import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.api.common.accumulators.IntCounter
import org.apache.flink.api.common.functions.RichMapFunction
import org.apache.flink.configuration.Configuration

/**
  * @description: ${description}
  * @author: Liu Jun Jun
  * @create: 2020-06-12 17:55
  **/
object AccumulatorTest {

  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment

    import org.apache.flink.streaming.api.scala._

    val dataDS = env
        .readTextFile("input/word.txt")
      //.socketTextStream("bigdata101", 3456)


    val resultDS: DataStream[String] = dataDS.map(new RichMapFunction[String, String] {

      //第一步:定义累加器
      private val numLines = new IntCounter

      override def open(parameters: Configuration): Unit = {
        super.open(parameters)
        //注册累加器
        getRuntimeContext.addAccumulator("num-lines", this.numLines)
      }

      override def map(value: String): String = {
        this.numLines.add(1)
        value
      }

      override def close(): Unit = super.close()
    })
    resultDS.print("单词输入")

    val jobExecutionResult = env.execute("单词统计")
    //输出单词个数
    println(jobExecutionResult.getAccumulatorResult("num-lines"))
  }
}

注意:这个案例中,我使用的是有限流,原因是这个累加器的值只有在最后程序的结束的时候才能打印出来,或者是可以直接在Flink UI中体现。

那么如何实现随时打印打印出累加器的值呢?那就需要我们自定义实现累加器了:

「而实现自定义的累加器我还没写完。。。。。」

Sink

那么当我们通过flink对数据处理结束后,要把结果数据放到相应的数据存放点,也就是sink了,方便后续通过接口调用做报表统计。

那么数据放哪里呢?

  1. ES
  2. redis
  3. Hbase
  4. MYSQL
  5. kafka

ES sink

关于ES的介绍,我也发过一篇文章,只不过是入门级别的,有需要的可以看看,贴链接如下:ES最新版快速入门详解

来吧,贴代码,注意看其中的注释

import org.apache.flink.api.common.functions.RuntimeContext
import org.apache.flink.api.common.serialization.SimpleStringSchema
import org.apache.flink.streaming.api.datastream.DataStream
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment
import org.apache.flink.streaming.connectors.elasticsearch.{ElasticsearchSinkFunction, RequestIndexer}
import org.apache.flink.streaming.connectors.elasticsearch6.ElasticsearchSink
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011
import org.apache.http.HttpHost
import org.elasticsearch.action.index.IndexRequest
import org.elasticsearch.client.Requests

/**
  * @description: ${description}
  * @author: Liu Jun Jun
  * @create: 2020-06-01 11:44
  **/
object flink2ES {
  def main(args: Array[String]): Unit = {
    // 1.获取执行环境
    val env: StreamExecutionEnvironment =
      StreamExecutionEnvironment.getExecutionEnvironment
      //2. 设置并行度为2
    env.setParallelism(2)
    //3. 设置关于kafka数据源的配置,主题,节点,消费者组,序列化,消费offset形式
    val topic = "ctm_student"
    val properties = new java.util.Properties()
    properties.setProperty("bootstrap.servers", "bigdata101:9092")
    properties.setProperty("group.id", "consumer-group")
    properties.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
    properties.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
    properties.setProperty("auto.offset.reset", "latest")

    // 从kafka中获取数据
    val kafkaDS: DataStream[String] =
      env.addSource(
        new FlinkKafkaConsumer011[String](
          topic,
          new SimpleStringSchema(),
          properties) )

 //添加ES连接
    val httpHosts = new java.util.ArrayList[HttpHost]()
    httpHosts.add(new HttpHost("bigdata101", 9200))
    
    //创建ESSink对象,在其中对数据进行操作
    val esSinkBuilder = new ElasticsearchSink.Builder[String](
    httpHosts, new ElasticsearchSinkFunction[String] {
        def createIndexRequest(element: String): IndexRequest = {
          val json = new java.util.HashMap[String, String]
          json.put("data", element)

          return Requests.indexRequest()
            .index("ws")
            .`type`("readingData")
            .source(json)
        }
        //重写process方法,对输入的数据进行处理,runtimeContext为上下文环境,requestIndexer为操作index的对象
     override def process(t: String, runtimeContext: RuntimeContext, requestIndexer: RequestIndexer): Unit = {

  //在add方法中,参数可以为:增、删、改、行动请求
       requestIndexer.add(createIndexRequest(t))
       println("saved successfully")
      }
    })
    //测试时这句代码一定要写,意思时:每一个请求都进行刷新
    //否则在测试的适合,kafka生产几条数据,但ES中却查不到,默认ES是5000条消息刷新一次,这就涉及到了ES的架构中索引的刷新频率,下面会写相应的配置。
    esSinkBuilder.setBulkFlushMaxActions(1)
    //真正将数据发送到ES中
    kafkaDS.addSink(esSinkBuilder.build())
 //触发执行
    env.execute()
  }
}

我们在上面的代码中,初步的通过kafka来获取数据,然后直接写到了ES中,但模拟的只是执行单个索引请求,我们在日常的生产中,肯定不是说一次请求刷新一次,这对ES来说,压力太大了,所以会有批量提交的配置。

  • bulk.flush.max.actions:刷新前要缓冲的最大操作数。
  • bulk.flush.max.size.mb:刷新前要缓冲的最大数据大小(以兆字节为单位)。
  • bulk.flush.interval.ms:刷新间隔,无论缓冲操作的数量或大小如何。

对于ES现在的版本,还支持配置重试临时请求错误的方式:

  • bulk.flush.backoff.enable:如果刷新的一个或多个操作由于临时原因而失败,是否对刷新执行延迟退避重试EsRejectedExecutionException。
  • bulk.flush.backoff.type:退避延迟的类型,可以是CONSTANT或EXPONENTIAL
  • bulk.flush.backoff.delay:延迟的延迟量。对于恒定的退避,这只是每次重试之间的延迟。对于指数补偿,这是初始基准延迟。
  • bulk.flush.backoff.retries:尝试尝试的退避重试次数

Redis Sink

关于Redis大家应该很熟悉了,我们来模拟一下数据处理结束后存入Redis,「我这里模拟的是redis单点。」

注意:因为我们是在IDE中要访问远程的redis,所以redis的redis.conf配置文件中,需要修改2个地方:

  1. 注释 bind 127.0.0.1,否则只能安装redis的本机连接,其他机器不能访问

b034840339babe382fbd02446a331f42.png
  1. 关闭保护模式 protected-mode no

2937c8edc120cdff22f55195eed2d9c1.png

然后就可以启动redis啦,这里再把几个简单的命令贴一下,做到全套服务,哈哈

  • 启动redis服务:redis-server /usr/local/redis/redis.conf
  • 进入redis: 进入的命令:redis-cli 指定IP:redis-cli -h master102 redis中文显示问题:redis-cli -h master -raw(也就是多加一个 -raw) 多个Redis同时启动,则需指定端口号访问 redis-cli -p 端口号
  • 关闭redis服务:
  1. 单实例关闭 如果还未通过客户端访问,可直接 redis-cli shutdown 如果已经进入客户端,直接 shutdown即可.
  2. 多实例关闭 指定端口关闭 redis-cli -p 端口号 shutdown
import org.apache.flink.api.common.serialization.SimpleStringSchema
import org.apache.flink.streaming.api.datastream.DataStream
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011
import org.apache.flink.streaming.connectors.redis.RedisSink
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisPoolConfig
import org.apache.flink.streaming.connectors.redis.common.mapper.{RedisCommand, RedisCommandDescription, RedisMapper}

/**
  * @description: ${连接单节点redis测试}
  * @author: Liu Jun Jun
  * @create: 2020-06-12 11:23
  **/
object flink2Redis {

  def main(args: Array[String]): Unit = {
    // 转换
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(2)

    val topic = "test1"
    val properties = new java.util.Properties()
    properties.setProperty("bootstrap.servers", "bigdata101:9092")
    properties.setProperty("group.id", "consumer-group")
    properties.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
    properties.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
    properties.setProperty("auto.offset.reset", "latest")

    // 从kafka中获取数据
    val kafkaDS: DataStream[String] =
      env.addSource(
        new FlinkKafkaConsumer011[String](
          topic,
          new SimpleStringSchema(),
          properties) )

    kafkaDS.print("data:")

    val conf = new FlinkJedisPoolConfig.Builder().setHost("bigdata103").setPort(6379).build()

    kafkaDS.addSink(new RedisSink[String](conf, new RedisMapper[String] {
      override def getCommandDescription: RedisCommandDescription = {
        new RedisCommandDescription(RedisCommand.HSET,"sensor")
      }

      override def getKeyFromData(t: String): String = {
        t.split(",")(0)
      }

      override def getValueFromData(t: String): String = {
        t.split(",")(1)
      }
    }))

    env.execute()
  }
}

flink to Hbase

有的时候,还需要把Flink处理过的数据写到Hbase,那我们也来简单试试。

import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment

/**
  * @description: ${flink to Hbase}
  * @author: Liu Jun Jun
  * @create: 2020-05-29 17:53
  **/
object flink2Hbase {
  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment

    import org.apache.flink.streaming.api.scala._

    val stuDS = env
        .socketTextStream("bigdata101",3456)
      .map(s => {
      //这里我创建了一个student样例类,只有name和age
        val stu: Array[String] = s.split(",")
        student(stu(0),stu(1).toInt)
      })
   //这里我们模拟的比较简单,没有对数据进行处理,直接写入到Hbase,这个HBaseSink是自己写的类,往下看
    val hBaseSink: HBaseSink = new HBaseSink("WordCount","info1")

    stuDS.addSink(hBaseSink)

    env.execute("app")
  }
}

case class student(name : String,age : Int)

/**
  * @description: ${封装Hbase连接}
  * @author: Liu Jun Jun
  * @create: 2020-06-01 14:41
  **/
import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.functions.sink.{RichSinkFunction, SinkFunction}
import org.apache.hadoop.hbase.{HBaseConfiguration, HConstants, TableName}
import org.apache.hadoop.hbase.client._
import org.apache.hadoop.hbase.util.Bytes

class HBaseSink(tableName: String, family: String) extends RichSinkFunction[student] {

  var conn: Connection = _
//创建连接
  override def open(parameters: Configuration): Unit = {
    conn = HbaseFactoryUtil.getConn()
  }

//调用
  override def invoke(value: student): Unit = {
    val t: Table = conn.getTable(TableName.valueOf(tableName))

    val put: Put = new Put(Bytes.toBytes(value.age))
    put.addColumn(Bytes.toBytes(family), Bytes.toBytes("name"), Bytes.toBytes(value.name))
    put.addColumn(Bytes.toBytes(family), Bytes.toBytes("age"), Bytes.toBytes(value.age))
    t.put(put)
    t.close()
  }
  override def close(): Unit = {
  }
}

好了,到这里flink的一些基本流处理API已经差不多说完了,但是关于flink特别重要的 窗口、精准一次性、状态编程、时间语义等重点还没说,所以下一篇关于flink的文章就再聊聊这些关键点。

扫码关注公众号“后来X大数据”,回复【电子书】,领取超多本pdf 【java及大数据 电子书】

http://weixin.qq.com/r/pUPx6a7EX-MgreqK9xa3 (二维码自动识别)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值