cnn 一维时序数据_基于CNN-LSTM深度学习方法及多属性时序数据的故障诊断方法与流程...

本发明涉及系统故障诊断技术领域,具体地说,涉及一种基于CNN-LSTM深度学习方法及多属性时序数据的故障诊断方法。

背景技术:

大型系统,特别是工业系统,其运行是十分复杂的,其运行涉及到对多个属性的控制。要准确把握其运行的状况,其中重要的一项技术就是故障诊断。大型系统一旦发生运行故障,那么必将导致不可估量的人身、财产损失,所以及时发现系统运行时的故障对系统运行的控制至关重要。故障诊断技术能够在容许的时间区间内探测系统运行的故障,从而指导技术人员排查和解决相关故障。

系统故障的发生和很多因素有关,首先是依赖于系统运行的多个属性。另外,系统故障的发生又是一个渐变的过程,当前系统故障的发生可能依赖于先前系统的某个状态,即系统故障的发生又具有时延性。

传统的系统故障诊断方法主要可以概括为以下几种:1、基于特征工程的故障诊断方法;2、基于特征学习的故障诊断方法。

基于特征工程的故障诊断方法,主要运用主成分分析(PCA)、小波包分解(WPD)、傅里叶变化(FTT)等方法提取影响系统故障发生的特征,然后将经过特征映射的数据输入到一个分类器当中,从而判断系统是否出现故障;这样的分类器有很多,包括支持向量机(SVM)、K近邻(KNN)、多层感知机(MLP)、人工神经网络(ANN)等。基于特征学习的故障诊断方法,首先是经过若干层的卷积或者池化操作,分层提取故障诊断的特征,然后在网络的最后添加一个分类器,分类器一般由若干层的全连接神经网络构成。

基于特征工程的故障诊断方法需要手动设计进行故障诊断的特征,然而对于不同的问题,特征的选择是不同的,这就使得方法的运用范围很小;同时,手动设计的特征高度依赖于领域知识,这使得提取到的特征很难准确地进行故障诊断。基于特征学习的故障诊断方法克服了基于特征工程的故障诊断方法需要进行手动设计特征的缺点,但没有考虑到故障发生的时延性。

时延性是导致系统故障发生的一个很重要的因素,如何准确的提取时延信息是提高故障诊断准确率的关键点。传统的故障诊断方法要么只考虑属性维度的影响,要么只考虑单属性时间序列的影响,没法将这两个因素综合考虑在一起。

技术实现要素:

本发明的内容是提供一种基于CNN-LSTM深度学习方法及多属性时序数据的故障诊断方法,其能够克服现有技术的某种或某些缺陷,能够较佳地整合系统运行时的属性信息和时延信息从而提高故障诊断的准确率和抗噪性。

根据本发明的基于CNN-LSTM深度学习方法及多属性时序数据的故障诊断方法,其包括以下步骤:

S1,采集系统的历史运行数据并进行数据预处理,之后基于CNN和LSTM建立故障诊断模型;

S2,采集系统的实时运行数据并进行数据预处理,之后送入S1中建立的故障诊断模型进行处理,并输出诊断结果。

本发明中,通过基于CNN和LSTM建立的故障诊断模型,能够很好地整合属性维度的特征信息和时间维度的时延信息,从而能够较佳地提高故障诊断的准确率和抗噪性。

作为优选,步骤S1和步骤S2中的数据预处理方法相同,且均包括如下步骤,

S31,对所采集的数据进行缺失值处理;

S32,对经S31处理的数据进行归一化处理;

S33,对经S32处理的数据进行滑窗处理。

本发明中,通过步骤S31能够较佳地对数据进行缺失值处理,从而能够较佳地保证原始数据的完整性;通过步骤S32能够较佳地提升对故障诊断模型训练时的收敛速度;通过步骤S33,能够将一维的样本数据转换为二维的样本数据

  • 2
    点赞
  • 36
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值