各类曲线的参数方程_参数方程

高中的解析几何实在是太不重视参数方程。在我看来,如果没有好好讲清楚参数方程,就等同于没有认识到“图形”是什么东西。

初中连函数的定义也不严格,只学了极个别的函数,一次函数的图像是直线,二次函数的图像是抛物线,反比例函数的图像是双曲线。在初中,我们常常认为含有坐标系的“综合题”与所谓的“几何题”是完全不同的。

高中实际上给出了一般的函数定义,非常明确地指出并不是所有的平面上曲线都是某个函数的图像。高中讨论了在平面直角坐标系中画出的几种图形,直线(任意的)、圆、圆锥曲线。

但是即便在高中,也没有特别清晰地说明什么是曲线。

一个矩形的内部是曲线吗?边界呢?你肯定会说内部不是曲线,但边界是。另一个例子是,

算是曲线,但是
应该不是曲线吧(因为不是连通的)?

曲线可以用参数方程定义,以平面上的曲线为例。

是关于
连续函数
是区间,则
是曲线。

比如,单位圆的参数方程是

如果是空间上的曲线,甚至一般的

维欧式空间(我们平时所说的“空间”就是三维欧式空间)上的曲线呢?如果引进向量值函数,即映射
就可以把它们都统一起来。

是关于
维向量值连续函数,
是区间,则
是曲线。

我们用这样的观点看待最简单的一类曲线,也就是直线。直线可以被定义为

在这里
是某定点,
是某已知的非零向量,实际上是直线的方向向量。

参数方程对于表示更复杂的曲线时往往会更方便,举个例子:

平面上的圆

沿
轴向右滚动一周,求圆上的点
的运动轨迹。

注意到这个圆的参数方程是

当圆滚动的角度是
时,圆心移动的距离是
此时原来的点
移动到
的位置,因此运动轨迹为

还可以类似地给出曲面的定义:

是关于
的二元
维向量值连续函数,
是连通区域,则
是曲面。

有时做高中的立体几何题,会抱怨高中不学平面的方程,觉得它应该与直线方程有类似的形式。平面的方程是

你看,其实高中所讲的平面向量基本定理与它只有一步之遥!

除了平面,其它常用的曲面还有柱面

锥面
等等,它们的直观形态不难想象,从而读者可以体会到用参数方程表达几何意义的强大威力!

这篇文章只是大致说明用参数方程定义几何图形的方式,并没有深入讨论代数(这方面我完全不懂)、分析层面上的东西。

比如,我们可以说圆是“光滑的”,而矩形是“有棱角的”,可见要想给出光滑的定义,仅仅用连续函数是不够的,如果你对此感兴趣,那么欢迎你进入微分几何的世界。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值