灰度共生矩阵纹理特征提取_基于时频能量谱纹理特征的跳频调制方式识别

文献信息:李红光,郭英,眭萍,齐子森.基于时频能量谱纹理特征的跳频调制方式识别[J].通信学报,2019,40(10):20-29.

摘要:针对跳频通信调制方式识别问题,提出了一种基于时频能量谱纹理特征的跳频调制方式识别方法。该方法首先采用平滑伪Wigner-Ville分布算法获取跳频信号时频图,并经过二维维纳滤波去除时频图背景噪声,提高低信噪比条件下时频图清晰度;然后采用连通域检测算法提取每跳信号的时频能量谱并将其转化为时频灰度图,计算其直方图统计特征和灰度共生矩阵特征组成22维特征向量;最后通过参数优化后的支持向量机分类器对特征集进行训练、分类和识别。仿真实验表明,所提取的多维特征向量具有较强的表征能力,避免了由单一特征相似性引起的误判问题,在信噪比为−4dB的条件下,对跳频信号BPSK、QPSK、SDPSK、QASK、64QAM和GMSK共6种调制方式的平均识别正确率达到91.4%。

1.引言

现有传统特征提取识别方法通过提取时频能量、瞬时波形、星座图和高阶统计量等特征实现调制方式的分类识别。文献[1]通过提取信号8阶以上矩的甚高阶统计量特征,实现了幅相调制信号的调制方式识别,该算法识别信号种类多,计算特征维数较高,运算量大。文献[2]通过计算分数低阶循环谱和频率谱截面的5个相关系数组成特征集,利用判决树分类器实现Alpha稳定分布噪声下的数字调制方式识别,该算法能有效抑制非高斯噪声影响,计算复杂度较低。文献[3]利用线性调制信号的星座图对称性,通过改进KS(Kolmogorov-Smirnov)分类器,实现调制方式的快速识别,提高了对噪声不确定性的稳健性。文献[4]通过构造4阶和6阶高阶累积量和循环谱特征,利用神经网络分类决策算法,实现5类信号的调制方式识别,该算法在低信噪比条件下,识别成功率较高,但可适用的信号调制方式种类较少。文献[5]提出了基于顺序统计量和降阶统计量特征的自动调制分类器,利用反向传播神经网络分类算法实现在已知或未知信道场景中的调制方式分类。文献[6]提取不同阶数和共轭项数的多个循环累积量平稳特征组成特征向量,实现了部分数字调制信号的盲识别,但所需观测样本较多,计算量较大。上述方法均是针对定频信号提出的,并不适用于载频伪随机变化的FH信号。

由于FH信号时频能量谱能够反映出不同调制方式的FH信号在时域和频域的能量分布情况,因此本文提出了一种基于时频能量谱纹理特征的FH信号调制方式识别算法。该算法主要由时频能量谱预处理、纹理特征提取和支持向量机(SVM)分类器3个部分组成。

2.本文提出的算法框架

本文算法的核心思想是将FH信号调制识别问题转换为时频图识别问题。由图1可知,数据预处理部分完成对FH信号时频图的提取去噪和转换分割,特征提取部分计算时频灰度图的直方图统计特征和灰度共生矩阵特征并组成多维特征向量,SVM训练识别部分完成对纹理特征向量的训练和分类。

c26ac3283581b33dd6d2bf31ac7e8278.png

3.调制识别步骤

A.FH信号时频变换

目前,提取FH信号时频图的方法主要有短时傅里叶变换(STFT)、伪Wigner-Ville分布(PWVD)、平滑伪Wigner-Ville分布(SPWVD)和Cohen分布(CWD)。STFT的时间和频率分辨率互相制约,时频分辨率低。PWVD是在Wigner-Ville分布上加时间窗,其模糊域核函数

,只能消除模糊平面
方向上的交叉项影响,v方向的交叉项影响严重。SPWVD同时具有时间窗和频率窗,在模糊域的核函数
,可以同时消除模糊平面
和v方向的交叉项,而且
相互独立,可根据实际FH信号单独设计时间和频率窗长,从而可获得较高的时频分辨率。CWD在模糊域的核函数

fd9a2afca27691182c19b84989025d69.png

其时间聚集性和频率聚集性不能单独控制,而是由参数

统一控制。当
较大时,时频聚集性好,交叉项抑制能力差;当
较小时,时频聚集性差,交叉项抑制能力好。

这导致时频聚集性和交叉项抑制相互制约,而且当

时,
,表明CWD核函数对模糊平面
和v轴均没有滤波效应。为了对比4种方法提取FH信号时频图效果,取一段含有白噪声的FH信号,信噪比为0dB,采样数据为1500个采样点,跳周期为200个采样点,调制方式为QPSK,采样频率为200kHz,频率集为[10,45,20,30,5,15,25,30,50]kHz,PWVD的
为127长矩形窗,SPWVD的
分别为127和63长的Gauss窗,CWD参数
=10,各方法时频图如图2所示。

由图2可知,对于FH信号,在相同信噪比条件下,SPWVD方法的交叉项抑制和时频分辨率更好,因此本文采用SPWVD方法提取FH信号时频图。

52b59e265af784a432db8dbf8c9259da.png

B.时频图去噪与转换

虽然SPWVD具有一定抗噪性能,但在低信噪比条件下,时频图中仍然存在很多背景白噪声[13],严重影响纹理特征提取。二维维纳滤波[14]能够根据图像的局部方差自适应调整滤波器,有效降低白噪声影响。因此本文采用二维维纳滤波方法去除时频图噪声。

为了提取每跳信号的时频灰度图,本文采用连通域检测算法提取FH信号每一跳的时频能量谱,再通过下述公式将时频能量谱转化为时频灰度图。

5186766a57d0e9f22abdf0a583a5986a.png

其中,

为每跳时频能量谱的第
行第
列的值,
为转换后时频灰度图的第
行第
列的值,L为灰度级,本文中L=256。图3是4种不同调制方式的FH信号单跳时频灰度图。从图3可知,不同调制方式的FH信号时频灰度图具有明显的纹理差异,本文通过提取纹理特征实现FH调制方式的分类识别。

d692f48c40b55c0b5bd07e9eefe462a3.png

C纹理特征提取

直方图统计特征用来表示灰度图中每个灰度级出现的频率,而本文时频灰度图的直方图统计特征即可表征每种调制FH信号的能量谱值大小和概率。

50d9ebfbc3bc1bca59cbbc9a76580980.png

灰度共生矩阵能够反映图像在方向、幅值和局部邻域的纹理信息分布情况,本文时频灰度共生矩阵即可表征每种调制FH信号的能量谱在特定方向上的空间分布和能量大小变化,以及局部能量谱的差异对比。本文计算4个特征参数,如下所示。

84d2ee32ff861dca0ee8231a8003c25d.png

D.SVM参数优化

传统的网格搜索算法(GS,gridsearch)[22]理论上只要不断扩大搜索空间范围,不断缩短搜索步长,即可找出全局最优解。但在实际应用过程中,优化参数数量的增加、搜索空间范围的扩大、搜索步长的不断减小,会导致搜索算法计算量增加,时效性降低。为了能够得到合适的SVM初始化参数,降低SVM的经验风险,控制模型复杂度,本文改进了网格搜索参数优化算法,其具体算法流程如下。

7f2ec6cd102815fd493f6a16387f085c.png

4.实验仿真

实验中FH信号跳周期为1500个采样点,采样率为1.5MHz,频率集为[460,100,150,100,225,75,300]kHz,调制方式有BPSK、QPSK、SDPSK、QASK、16QAM和GMSK共6种,初始相位设为0,巴克码长为随机[150,200,250,300]个采样点,加性噪声为高斯白噪声,均值为0,样本长度为9000个采样点,每个样本提取5个完整跳周期的时频灰度图,每个时频灰度图大小为1500×64,每种调制信号的信噪比为−10~10dB,每隔2dB采集400个样本作为训练集,共4400个训练样本。每种调制信号的信噪比为−10~10dB,每隔2dB采集200个样本作为测试集,共2200个测试样本。将6种调制信号的测试样本随机排列,信噪比以2dB间隔从−10dB递增至6dB,每个信噪比下均做20次分类实验,结果取平均值。本文算法与文献[2]、文献[4]和文献[7]算法的仿真对比结果如图4所示。

c5ec021587f9c805401b6ac7eecc1134.png

由图4可知,4种算法的识别正确率均与信噪比有关,当信噪比大于0dB时,本文算法的识别正确率达到94%左右;当信噪比大于−4dB时,本文算法的识别正确率大于87%,随着信噪比继续降低,4种算法的识别正确率均不同程度下降。但是对于QASK、QPSK和GMSK这3种调制方式,当信噪比为−6dB时,本文算法的识别正确率仍然大于82%。文献[2]算法由于提取特征集的单一性,当信噪比较低时,相关系数特征波动较大,导致分类器判决阈值设置不合理,识别率下降明显。文献[4]和文献[7]算法均是提取信号的高阶累积量特征,由于FH信号载频的伪随机变化对特征的稳定性和表征能力有较大影响,导致算法在低信噪比条件下,分类性能下降明显。本文算法在信号预处理阶段增加了二维维纳滤波,降低了时频图背景噪声,提高了算法抗噪性。当信噪比为−4dB时,6种调制方式的FH信号混合识别的结果如表1所示,其整体平均识别正确率为91.4%。从表1中可知,本文算法对于6种调制方式信号的识别正确率均较高。识别正确率最低的是BPSK信号,算法识别误差主要发生在纹理特征相似的调制方式之间,例如SDPSK和BPSK调制信号,由于2种调制信号的时频图在背景噪声的影响下,一些细微纹理特征变得模糊甚至丢失,导致提取的特征表征能力不足,分类正确率下降。

ad20b3f13ff1a5f61a11bc2dc8c87d15.png

5.结论

本文提出了一种基于时频能量谱纹理特征的跳频调制方式识别算法。该算法提取每跳时频能量灰度图的直方图统计特征和灰度共生矩阵特征组成22维特征向量,通过参数优化后SVM分类器进行了训练、分类和识别。实验结果表明,本文算法的识别正确率高于其他2种算法,尤其在低信噪比条件下识别性能较好,说明本文算法所提取的特征集具有较高的稳定性、充分性和可分性。如何降低多维特征向量的冗余度,提高算法的时效性是下一步研究重点。

个人总结:

1) 时频能量谱纹理图能较好的反应信号特性,在课题的研究中,不能光着眼于深度学习的方法,传统的人工特征参数提取依然具有良好的可解释性,并且其计算的复杂度和工程量也较小,适合考虑作为课题中的一部分浮现工作内容。

2) 时频能量纹理谱可以进一步分析,对不同能量区域进行上色处理,由于不同信号的能量分布也是不同的,因此上色后的时频能量纹理谱图增加了颜色的特征信息,可以用作深度学习网络作为分类器来考虑。

主要参考文献

6e2a325eaf9569289a7fa30f2a001030.png

c9023054441cc357441a5037d8b7f39c.png

7978251bafd471edbab28af3a735e257.png
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值