t检验自由度的意义_T检验、F检验和统计学意义

【统计学】

T

检验、

F

检验和统计学意义(

P

值或

sig

值),想了解显著性差异

的也可以来看

2007

10

12

星期五

10:45

1,T

检验和

F

检验的由来

一般而言,

为了确定从样本

(sample)

统计结果推论至总体时所犯错的概率,

我们

会利用统计学家所开发的一些统计方法,进行统计检定。

通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布

(probability distribution)

进行比较,我们可以知道在多少

%

的机会下会得到

目前的结果。倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会

很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有

统计学上的意义的

(

用统计学的话讲,就是能够拒绝虚无假设

null

hypothesis,Ho)

。相反,若比较后发现,出现的机率很高,并不罕见;那我们便

不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。

F

值和

t

值就是这些统计检定值,与它们相对应的概率分布,就是

F

分布和

t

布。统计显著性(

sig

)就是出现目前样本这结果的机率。

2

,统计学意义(

P

值或

sig

值)

结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。专业上,

p

值为结果可信程度的一个递减指标,

p

值越大,我们越不能认为样本中变量的

关联是总体中各变量关联的可靠指标。

p

值是将观察结果认为有效即具有总体代

表性的犯错概率。

p=0.05

提示样本中变量关联有

5%

的可能是由于偶然性造成

的。即假设总体中任意变量间均无关联,我们重复类似实验,会发现约

20

个实

验中有一个实验,

我们所研究的变量关联将等于或强于我们的实验结果。

(这并

不是说如果变量间存在关联,

我们可得到

5%

95%

次数的相同结果,

当总体中的

变量存在关联,

重复研究和发现关联的可能性与设计的统计学效力有关。

)

在许

多研究领域,

0.05

p

值通常被认为是可接受错误的边界水平。

3

T

检验和

F

检验

至于具体要检定的内容,须看你是在做哪一个统计程序。

举一个例子,比如,你要检验两独立样本均数差异是否能推论至总体,而行的

t

检验。

两样本

(

如某班男生和女生

)

某变量

(

如身高

)

的均数并不相同,但这差别

是否能推论至总体,代表总体的情况也是存在著差异呢?

会不会总体中男女生

根本没有差别,只不过是你那麼巧抽到这

2

样本的数值不同?

为此,我们进行

t

检定,算出一个

t

检定值。

与统计学家建立的以「总体中没差别」作基础的

随机变量

t

分布进行比较,看看在多少

%

的机会

(

亦即显著性

sig

)

下会得到目

前的结果。

若显著性

sig

值很少,比如

<0.05(

少于

5%

机率

)

,亦即是说,「如

果」总体「真的」没有差别,那麼就只有在机会很少

(5%)

、很罕有的情况下,才

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值