【统计学】
T
检验、
F
检验和统计学意义(
P
值或
sig
值),想了解显著性差异
的也可以来看
2007
年
10
月
12
日
星期五
10:45
1,T
检验和
F
检验的由来
一般而言,
为了确定从样本
(sample)
统计结果推论至总体时所犯错的概率,
我们
会利用统计学家所开发的一些统计方法,进行统计检定。
通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布
(probability distribution)
进行比较,我们可以知道在多少
%
的机会下会得到
目前的结果。倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会
很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有
统计学上的意义的
(
用统计学的话讲,就是能够拒绝虚无假设
null
hypothesis,Ho)
。相反,若比较后发现,出现的机率很高,并不罕见;那我们便
不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F
值和
t
值就是这些统计检定值,与它们相对应的概率分布,就是
F
分布和
t
分
布。统计显著性(
sig
)就是出现目前样本这结果的机率。
2
,统计学意义(
P
值或
sig
值)
结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。专业上,
p
值为结果可信程度的一个递减指标,
p
值越大,我们越不能认为样本中变量的
关联是总体中各变量关联的可靠指标。
p
值是将观察结果认为有效即具有总体代
表性的犯错概率。
如
p=0.05
提示样本中变量关联有
5%
的可能是由于偶然性造成
的。即假设总体中任意变量间均无关联,我们重复类似实验,会发现约
20
个实
验中有一个实验,
我们所研究的变量关联将等于或强于我们的实验结果。
(这并
不是说如果变量间存在关联,
我们可得到
5%
或
95%
次数的相同结果,
当总体中的
变量存在关联,
重复研究和发现关联的可能性与设计的统计学效力有关。
)
在许
多研究领域,
0.05
的
p
值通常被认为是可接受错误的边界水平。
3
,
T
检验和
F
检验
至于具体要检定的内容,须看你是在做哪一个统计程序。
举一个例子,比如,你要检验两独立样本均数差异是否能推论至总体,而行的
t
检验。
两样本
(
如某班男生和女生
)
某变量
(
如身高
)
的均数并不相同,但这差别
是否能推论至总体,代表总体的情况也是存在著差异呢?
会不会总体中男女生
根本没有差别,只不过是你那麼巧抽到这
2
样本的数值不同?
为此,我们进行
t
检定,算出一个
t
检定值。
与统计学家建立的以「总体中没差别」作基础的
随机变量
t
分布进行比较,看看在多少
%
的机会
(
亦即显著性
sig
值
)
下会得到目
前的结果。
若显著性
sig
值很少,比如
<0.05(
少于
5%
机率
)
,亦即是说,「如
果」总体「真的」没有差别,那麼就只有在机会很少
(5%)
、很罕有的情况下,才