logisticregression 参数_机器学习——逻辑斯谛回归(logistic regression)

080265ae4626645154349dfd3aaa217a.png

逻辑斯谛回归(logistic regression)是统计学习中的经典分类方法,属于对数线性模型,即可以认为是被Sigmoid函数所归一化后的线性回归模型!

根本思想:逻辑斯谛回归的求解最后就是计算交叉熵,而交叉熵就是最大化极大似然函数,通常采用的优化方法是随机梯度下降

先给出《统计学习方法》里的内容:

b1b308157be4abde316c272f7acc6b9c.png

但我更喜欢李宏毅老师的版本,更加通俗易懂。根据李宏毅老师的课件,机器学习的算法都可以分为三个部分:

Step1:Function Set

09c483c36e9b2197733c628693de8f88.png

(由于公式不能输入,我只能贴图片了~~~,编辑了好久的公式)

89628553d2871604e0cfc8c92f10845a.png

(是不是很像神经元。哈哈)

a50d7058e507796e3aad1842da05e07b.png

具体的公式推导如下:

c0620f866e033fc84f910ff1ebb18253.png

Step 2:判断一个函数的好坏

有了函数集后,我们的下一步目标就是判断一个函数的好坏!这个时候就需要一个训练集(train data)。假想这个训练集是由我们定义的概率生成模型所产生的,每一个X都有一个所属的类别C1或者C2,如下所示。

1e9d76d931643ae9ee0244c0c28c272e.png

给定一组w,b,其对应的概率生成模型就确定了,产生的训练集也相对应确定了。要产生上述的训练集,它的机率就通过下面这个公式计算:

22caed9afbb0914309cd4e401ecacb10.png
646b771ed9f9eabd2c56e565775469d0.png

下面需要做一个数学的转换推导,详细内容如下:

0c6e2157c3af1fc2986568fe3ac631e8.png

Step 3:找到最好的function

当我们有了优化目标后,最后一步就是去找最好的function,优化方法自然是随机梯度下降。下面给出梯度的推导过程:

469a869cfc20281b44acfda8f10403b6.png

根据随机梯度下降法,找到最好的参数。在这里,为了方便,将参数向量和输入向量加以扩充,仍然记作w,x,即w=(w(1),w(2),…,w(n),b)T,x=(x(1),x(2),…,x(n),1)T

我在学习的时候是李宏毅老师的课程和《统计学习方法》一起学的,结果发现里面的公式居然不一样,心想:我擦,居然有2个不同的结果,也是难受。后来细想才发现,原来二者是一个东西,只是表达的方式不一样(我在怀疑是不是老师也需要查重,哈哈。所以才学我们论文查重时,一样的结果用不同的方式来表达)。

7f07e0953c8652970b06eb4691d778a8.png

这两个公式,我都跑过程序,结果是一样的。

上面都是二分类的问题,对应到多分类其实也一样,李宏毅老师的课件上的例子非常好理解,这里直接贴出来给大家分享。用的是softmax函数算出的概率作为分类的标准,谁的概率大,就属于哪一类。

afb1c44278bc6b1d0c648a6cb4bb3aca.png
63b210e444a680df8a422f57fe843678.png

下面是一个小的总结,也是逻辑斯谛回归的本质:逻辑斯谛回归的求解最后就是计算交叉熵,而交叉熵就是最大化极大似然函数,通常采用的优化方法是随机梯度下降

0f915a0eec2f9befa6252c99f84e9bf9.png

这里也贴出代码,仅供参考!

4c763057c3a679ecfdc4cc2165e18e2c.png
16c91a598b738c4401c795bfd91165c0.png
4ba79d090fbec1131c03e594941aafa7.png
c44fdefbb4f09ea734cbf6ac3d25f3b5.png
8ccf98a757433ba7b999ca5776da434d.png

如有错误或者表述不当的地方,请大家一定指出来,相互学习,相互进步。

结束!(当然,点关注一波也是可以的。)

dd16903bdcbbed337d06641c4f7e3cd5.png
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 逻辑斯谛回归logistic regression)是一种用于分类问题的统计学习方法,属于监督学习中的一种。它的基本思想是通过建立模型去学习不同特征之间的关系,然后使用这个模型去对未知数据进行分类。逻辑斯谛回归是一种线性模型,可用于进行二分类或多分类问题。在统计学习方面,逻辑斯谛回归是一种经典的机器学习方法。 ### 回答2: 逻辑斯谛回归是一种用于二分类问题的机器学习算法。其基本思想是将输入变量与一个sigmoid函数相乘,从而得到该分类的概率值。这个sigmoid函数将实数映射到[0,1]区间内,当概率趋近于0时,函数取到0,概率趋近于1时,函数取到1,当输入为0时,函数取到0.5。这个函数的形式为: $$\sigma(z)=\frac{1}{1+e^{-z}}=\frac{e^z}{1+e^z}$$ 其中z为线性回归模型的输出。逻辑斯谛回归通过最大似然估计来确定模型参数,目标是最大化似然函数。似然函数的形式为: $$L(w)=\prod_{i=1}^N[y_iP(y_i=1|x_i,w)+(1-y_i)P(y_i=0|x_i,w)]$$ 其中N为样本数,$y_i\in\{0,1\}$为样本i的类别,$y_i=1$表示正例,$y_i=0$表示反例。$P(y_i=1|x_i,w)$和$P(y_i=0|x_i,w)$分别表示当输入变量为$x_i$时,样本i的正例概率和反例概率。使用log函数对似然函数取负对数,然后对参数w求偏导,得到的结果为: $$\nabla L(w)=\sum_{i=1}^N[y_i-\sigma(w^Tx_i)]x_i$$ 使用梯度下降法来更新参数,得到迭代更新公式为: $$w^{(t+1)}=w^{(t)}+\eta\nabla L(w^{(t)})$$ 其中$\eta$为学习率,$w^{(t)}$表示t时刻的参数值。 逻辑斯谛回归可以扩展到多分类问题,称为softmax回归,也可以应用于不同的领域,例如医学诊断、金融风险评估等。 ### 回答3: 逻辑斯谛回归Logistic Regression)是一种用于处理二分类问题的统计机器学习算法,其思想来源于逻辑学。在《统计学习方法》一书中,逻辑斯谛回归是目标函数为对数似然函数,利用梯度下降法或牛顿法估计参数的一类判别模型。 逻辑斯谛回归的模型可以表示为$$h_{\boldsymbol{w}}(\boldsymbol{x})=\sigma(\boldsymbol{w}^{\rm T} \boldsymbol{x})$$其中,$h_{\boldsymbol{w}}(\boldsymbol{x})\in [0,1]$ 表示 $\boldsymbol{x}$ 属于正类的概率,$\sigma(z)=\dfrac{1}{1+\mathrm{e}^{-z}}$ 是 sigmoid 函数。逻辑斯谛回归的目标函数是对数似然函数$$L(\boldsymbol{w})=\sum_{i=1}^{N}[y_i \log h_{\boldsymbol{w}}(\boldsymbol{x_i})+(1-y_i)\log(1-h_{\boldsymbol{w}}(\boldsymbol{x_i}))]$$其中,$N$ 是样本数量,$y_i\in\{0,1\}$ 是样本 $\boldsymbol{x_i}$ 的真实标记。对数似然函数一般通过梯度下降法或牛顿法来求得最优参数 $\boldsymbol{w}$。梯度下降法的更新公式是$$\boldsymbol{w} \leftarrow \boldsymbol{w}+\alpha \sum_{i=1}^{N}(y_i-h_{\boldsymbol{w}}(\boldsymbol{x_i}))\boldsymbol{x_i}$$其中,$\alpha$ 是学习率,$\boldsymbol{w}$ 初始化为 0 或其它随机值,重复进行上述更新直到收敛。牛顿法是一种二阶优化方法,其参数更新公式是$$\boldsymbol{w} \leftarrow \boldsymbol{w}-\boldsymbol{H}^{-1}\nabla_{\boldsymbol{w}}L(\boldsymbol{w})$$其中,$\boldsymbol{H}$ 是 Hessian 矩阵。牛顿法比梯度下降法收敛速度更快,但计算量更大。 逻辑斯谛回归的优点是模型参数较少,计算速度较快,且可以得到样本属于正类的概率。缺点是对异常值比较敏感,对特征之间的相关性比较敏感,容易出现过拟合。在实际应用中,可以通过添加正则化项或使用 L1、L2 正则化等方式来避免过拟合。 总之,逻辑斯谛回归是一种用于处理二分类问题的有效算法,可以应用于回归和分类问题。它的思想简单,实现容易,是初学者入门的理想算法之一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值