- 博客(62)
- 资源 (3)
- 收藏
- 关注
原创 原生CSS写轮播图
html代码<div class="banner"> <a id="bnimg1" href="/1.jpg" target="_blank"></a> <a id="bnimg2" href="/2.jpg" target="_blank"></a> <a id="bnimg3" href="/3.jpg" target="_blank"></a> </div>css代码body{
2020-07-07 00:23:59 342
原创 CAS机制以及与Synchronized的区别
CAS是英文单词Compare And Swap的缩写,也就是比较并替换。CAS机制规定:当一个线程对一个变量进行操作时,会创建三个操作数保存该变量的信息,也就是内存地址V,变量原来的值A,要修改的新值B。当该线程对变量操作完毕要把新值保存到变量之前,会先比较A与内存地址V中当前的实际值是否相等,相等才能将变量的值更新为新值B,否则提交失败,并重新尝试。这个重新尝试的过程被称为自旋。CAS机...
2020-01-27 17:16:45 1370
原创 python项目部署之Nginx配置说明
nginx配置1.相关目录:日志记录与错误记录目录:/var/log/nginx/conf目录:/etc/nginx/conf.d//usr/share/nginx/2.相关命令:检查conf文件nginx -c <conf file>服务操作sudo service nginx start | stop | restart3.配置:先在conf目录...
2019-07-02 11:02:29 590
原创 python项目部署之uwsgi配置说明
uwsgi配置在项目文件夹同级目录创建logs文件夹,创建log、pid、sock文件例:~/project/foodtop mkdir logs cd logs touch foodtop.log foodtop.pid foodtop.sock在项目文件夹同级目录创建文件uwsgi.ini在uwsgi.ini文件中加入如下内容:注意:①其中目录必须是绝...
2019-07-02 10:58:02 2360
原创 Ubuntu中创建应用快捷方式并固定到快速启动栏
这种方式通常是在线下手动安装应用时会出现1.创建快捷方式 .desktop 文件首先,Ubuntu的快捷方式都放在 **/usr/share/applications** 文件夹下创建desktop文件:cd /usr/share/applications/touch Xxxx.desktopsudo vim Xxxx.desktop然后输入如下内容:[Desktop En...
2019-06-27 15:16:22 2258
原创 服务器系统配置
#系统版本:ubuntu-server 18.04.02 LTS----------------------------------------------------------------一、数据库 1.1 mysql: 1)安装: sudo apt-get install mysql-server sudo apt-get install mysql-client ...
2019-06-18 00:08:26 385
原创 flask_sqlalchemy中的db.session.query()和model.query()的区别
先申明一下,我喜欢从问题入手问题描述:使用db.session.commit()提交数据后,使用model.query()查不到新增加的数据问题原因分析:db.session.commit()是提交了数据到数据库,但是没有刷新模型映射中的数据,也就是model.query()中的数据。而使用db.session.query()则是 从整个服务会话中进行查询,而db.session.com...
2019-06-14 16:46:30 7329 1
原创 jQuery实现切换式轮播图
<!DOCTYPE html><html><head> <title>banner</title> <script src="jquery-3.4.1.js"></script> <style> .banner{ display:inline-block; } .banner...
2019-05-17 18:48:40 208
原创 scrapy框架之今日电影
城市电影广州今日电影网址:http://guangzhou.movie.iecity.com/FilmList.html①items.py:定义爬取项目,添加类成员# -*- coding: utf-8 -*-# Define here the models for your scraped items## See documentation in:# https://doc.sc...
2019-05-09 19:16:14 276
原创 pycharm下安装python虚拟环境
第一步:点击创建虚拟环境选项:进入pycharm-》file-》settings-》project-》project interpreter(解释器)-》右上角设置图标-》create Virtual Env第二步:创建虚拟环境输入虚拟环境名称,选择使用的python版本(base interpreter),点击OK即可。说明:第一项: Inherit global s...
2019-04-27 11:36:52 825 1
原创 Linux之Ubuntu18.04 下的手工python虚拟环境创建
一、准备工作由于pip工具在新装好的Ubuntu环境中并未安装,因此需要有以下准备工作* 安装pip3* 安装虚拟环境配置工具python-virtualenv安装命令:sudo apt-get install python3-pipsudo apt-get install python-virtualenv安装过程如图所示:二、虚拟环境搭建步骤...
2019-04-27 03:10:23 599
原创 冒泡、插入、快速排序性能对比
冒泡、插入排序代码见:https://blog.csdn.net/JohnsonSmile/article/details/89386783https://blog.csdn.net/JohnsonSmile/article/details/89407058下面是快速排序的代码:import numpy as np;def quick(L): if len(L)<...
2019-04-19 20:31:17 272
原创 插入与冒泡排序之性能对比
冒泡排序的代码请看https://blog.csdn.net/JohnsonSmile/article/details/89386783下面的bbsort是冒泡排序,ISsort是插入排序import numpy as np;import matplotlib.pyplot as plt;from time import time;from bubblesort import b...
2019-04-19 19:55:00 232
原创 冒泡之递归与循环时间比对
import numpy as np;import matplotlib.pyplot as plt;from time import time;def bbsort(lll): length = len(lll); if length == 1: return lll; for i in range(length-1): if l...
2019-04-18 20:03:10 295
原创 matplotlib.pyplot:柱状图或条形图 bar
import matplotlib.pyplot as plt;plt.bar( x, # 元组或列表,数据的x坐标序列 height, # 元组或列表,数据序列 width, # 数值或列表,条形宽度,默认0.8 bottom, # 数值或列表,y轴的基准值,默认0 align, ...
2019-04-16 21:22:44 5304
原创 matplotlib.pyplot:数据饼图 pie
import matplotlib.pyplot as plt;plt.pie( x, # 元组或列表,指定绘图数据 explote=None, # 元组或列表,指定饼图的突出部分,或者切割出某一部分 labels=None, # 元组或列表,为饼图的数据添加相应的标签说明 colors=Non...
2019-04-16 20:20:35 1168
原创 MySQL表记录管理
表记录管理一、增:插入记录1)所有字段都插入值:insert into 表名 values('列内容1',...);说明:插入列内容数量应与设定的列的数目一致,否则会出错values后面没有指定字段,表示插入所有值列表的个数、顺序、类型要和表结构严格对应。字符串类型必须要用单引号包起来now()函数表示取数据库当前时间2)向表中插入指定字段值:insert ...
2019-04-16 01:46:21 268
原创 MySQL数据类型
数据类型:数值类型、字符类型、日期时间类型、枚举类型1. 数值类型- 整数型:TINYINT(1字节,-128~127), SMALLINT(2字节), INT(4字节,42亿), BIGINT- 浮点数: DECIMAL(总共位数,小数位数)使用注意:整数要注意存储范围浮点数要注意精度-- 类型(n) 表示默认显示位数-- unsigned 表示无符号...
2019-04-16 01:44:53 176
原创 MySQL数据库管理与表管理
一:库管理:1.查看: 1)查看库:show databases; 2)查看当前库:select database(); 3)查看某个库建库语句:show create database 库名;2.创建: 1)语法:create database 库名 [字符集] 库名命名规则: 可以使用数字、字母、下划线,不能使用纯数字; 区分大小写,不能使用...
2019-04-16 01:43:02 213
原创 MySQL安装及配置
一:Windows下1.安装步骤:①下载:mysql-installer-community-5.7.24.0.msi②点击安装:* 选 server only 或 developer default* 设置端口:默认3306* 设置root用户密码(记录下来)* 添加用户,并设置密码③确认* 命令行输入: netstat -an | findstr 3306...
2019-04-16 01:40:58 197
原创 window10下彻底删除多余引导项的终极方法,不论该引导项的系统及其分区是否已被删除
这里先说点废话(请不要出现我经历中的愚蠢的错误),说一下我的经历:由于在学python,而对于开发人员,Ubuntu作为Linux具有许多Windows没有的优点。于是当时萌生了要在U盘上装一个Ubuntu系统(不是U盘启动安装盘),然后过程很痛苦,安装没成功,开机的时候死在了紫色画面,于是我强制关机,通过bootmenu进入了win10,狠心删除了该U盘上的所有分区(包括U盘上的EFI分区)...
2019-04-13 22:23:25 38747 9
原创 python爬虫第二课:请求头之伪装UA
UA:'User-Agent',一些网站最基本的反爬虫手段就是通过UA判断来源,如果UA不正常,则可能是机器人了。现在进行伪装,建立一个字典,如果懒得去浏览器上复制,则可以使用fake_useragent库的UserAgent模块:# headers.pyfrom fake_useragent import UserAgent;class headers: def __in...
2019-04-08 18:39:21 1336
原创 python虚拟环境的重要性与环境搭建
一:搭建python虚拟环境的重要性:在单一服务器上只开发一个项目时可以直接使用系统原生环境,但在开发多个项目后导出第三方包时发现系统原生python下有很多第三方包,这些包对应着不同的项目,此时给第三方包导出区分包对应项目带来麻烦。而虚拟环境是创建一个“干净,纯净”的python项目运行环境,使用虚拟环境可以给每一个项目配置一个虚拟环境,这样使得项目对应使用的第三方包很明确,迁移时只需导...
2019-04-07 01:04:48 505
原创 主成分分析法PCA(二):python实现
三:算法代码这里我将代码分享给大家,但大家使用时请附上来源!!import numpy as np;class PCA: def __init__(self,rate=0.85,is_normal=False): self.rate = rate; self.is_normal=is_normal; def average(self,x,...
2019-03-30 22:43:34 1376
原创 主成分分析法PCA(一):算法原理
一:算法概述:主成分分析法,principle component analysis,PCA。也称主分量分析,是一种大样本,多变量数据间内在关系的一种方法。这种方法利用降维的思想,通过向量变换的方法将众多线性相关指标转换成少数线性无关的综合指标,从而切断相关的干扰,指出主导成分,作出更准确的估量。PCA在几何上表现为:将原坐标变换成新正交坐标系,使之指向样本点散步最开的p个正交方向。在...
2019-03-30 22:39:56 4696
原创 关于原始特征、有效特征、特征提取、特征选取
一:特征:特征分为原始特征、有效特征。1.1 原始特征:可以通过测量直接得到的特征。原始特征通常有很大冗余,如果直接将原始特征作为分类特征送入分类器,不仅使分类器复杂、计算量大,且分类错误率不一定小,因此有必要减少特征数目,以获取少而精的分类特征。1.2 有效特征:有代表性、分类性能好的特征(通常是采用特征提取、特征选取方法获得的)。特点:①类内稳定,即类内差异小,...
2019-03-30 14:49:45 3935
原创 过度拟合 Over fitting
一:说明过度拟合是指模型与训练数据拟合较好,训练误差很小或没有训练误差,但不能很好地推广到不可见数据。或者说在实际的整个数据分布(包含训练集以外实例)上表现不好时,称之为该模型存在过度拟合。由于测试学习算法是否成功在于算法对于训练中未见过的数据的预测执行能力。因此换句话说,模型的训练误差小,泛化误差高,两者间差距过大时,我们称之为该模型存在过度拟合。二:产生的原因通...
2019-03-30 03:53:46 2926
原创 关于训练误差、测试误差、泛化误差
我们在学习模式识别的时候,总是会遇到一些专业词汇,而其中有的专业词汇叫人傻傻分不清。今天我就来说说训练误差、测试误差、泛化误差到底是什么,区别所在。对于分类学习算法,我们一般将样本集分为训练集和测试集,其中训练集用于算法模型的学习或训练,而测试集通常用于评估训练好的模型对于数据的预测性能评估。而这个先后顺序就是先将算法在训练集上训练得到一个模型,然后在测试集上评估性能。这个...
2019-03-30 03:27:24 25906
原创 决策树原理
一、概述决策树是一种功能强大而且较为受欢迎的分类预测工具。这种工具能以树形图将对实例分类时产生的规则表达出来。决策树是一种典型的非线性分类器。二、基本原理2.1 表现形式决策树基本组成部分:决策节点、分支、叶子。其中每个分支都是一个新的决策节点或者叶子。根节点:决策树最上边(开始)的节点。决策节点:一个问题或决策,通常对应分类对象的属性。叶子:一种可能的分...
2019-03-25 23:49:51 1419
原创 BaggignClassifier(一):参数说明
BaggignClassifier是集成学习的一种集成方法,俗称袋装法,在sklearn库中该分类器有如下参数:from sklearn.ensemble import BaggignClassifier;model = BaggignClassifier( base_estimator=None, n_estimators=10, max_samples=1...
2019-03-25 18:50:17 680
原创 AdaBoostClassifier(一):参数说明
AdaBoostClassifier是集成学习的一种集成方法,其采用的基础分类器默认为决策树,在sklearn库中该分类器有如下参数:from sklearn.ensemble import AdaBoostClassifier;model = AdaBoostClassifier( base_estimator=None, n_estimators=-50, l...
2019-03-25 18:45:03 4917 2
原创 DecisionTreeClassifier(一):参数说明
DecisionTreeClassifier又称决策树,在sklearn库中该分类器有如下参数:from sklearn.tree import DecisionTreeClassifier;model = DecisionTreeClassifier( criterion='gini', splitter='best', max_depth=None, ...
2019-03-25 18:40:29 2041 1
原创 LogisticRegression(一):参数说明
LogisticRegression又称对数回归或逻辑回归,常用于分类的两类问题,在sklearn库中该分类器有如下参数:from sklearn.linear_model import LogisticRegression;model = LogisticRegressioni( penalty='l2', dual=False, tol=0.0001, ...
2019-03-25 18:36:24 3219
原创 MLPclassifier(一):参数说明
MLPclassifier又称多层感知机Multiple layers perception或神经网络,在sklearn库中的该分类器有以下参数:from sklearn.neural_network import MLPClassifier;model = MLPClassifier( hidden_layer_sizes=(100, ), activation=’r...
2019-03-25 18:29:37 7132
原创 KNeighborsClassifier(一):参数说明
KNeighborsClassifier又称K最近邻,是一种经典的模式识别分类方法。sklearn库中的该分类器有以下参数:from sklearn.neighbors import KNeighborsClassifier;model = KNeighborsClassifier( n_neighbors=5, weights=’uniform’, alg...
2019-03-25 18:23:24 8945
转载 sklearn 决策树DecisionTreeClassifier()参数详解
【原文网址】:https://blog.csdn.net/li980828298/article/details/51172744使用sklearn中自带的决策树方法简单代码 如下:from sklearn import treemode = tree.DecisionTreeClassifier(criterion='gini')mode.fit(X,Y)y_test = mod...
2019-03-25 17:51:34 5608
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人