python动画演示算法_python动画演示深度优先算法征采逃出迷宫的路径

寻找起始节点与目的节点之间路径的算法,常用于搜索逃出迷宫的路径。主要头脑是,从入口最先,依次征采周围可能的节点坐标,但不会重复经由同一个节点,且不能通过障碍节点。若是走到某个节点发现无路可走,那么就会回退到上一个节点,重新选择其他路径。直到找到出口,或者退到起点再也无路可走,游戏竣事。固然,深度优先算法,只要查找到一条行得通的路径,就会住手搜索;也就是说只要有路可走,深度优先算法就不会回退到上一步。

从起点最先,查询下一步走得通的节点,将这些可能的节点压入客栈中,已经走过的节点不再实验。查询完毕之后,从客栈中取出一个节点,查询该节点周围是否存在走得通的节点。若是不存在可能的节点,就继续从客栈中取一个节点。重复以上操作,直到当前节点为终点,或者客栈中再无节点。

界说数据:

起始节点与目的节点

存储节点的客栈

界说辅助函数

获取下一节点的函数: successor

判断是否为终点的函数: test_goal

首先,我们来界说栈这种数据结构,栈是一种后进先出的数据结构。

由于之后的广度优先搜索亨达全球HantecMarkets署理申请会使用到行列,A* 算法会用到优先行列,我们界说了抽象基类,以便后续使用。deque 是双端行列,与内置类型 list 操作类似,但头部与尾部插入和删除操作的时间复杂度均为 O(1)。

# utils.py

from abc import abstractmethod, ABC

from collections import deque

class Base(ABC):

def __init__(self):

self._container = deque()

@abstractmethod

def push(self, value):

“””push item”””

@abstractmethod

def pop(self):

“””pop item”””

def __len__(self):

return len(self._container)

def __repr__(self):

return f'{type(self).__name__}({list(self._container)})’

class Stack(Base):

def push(self, value):

self._container.append(value)

def pop(self):

return self._container.pop()

下面我们来界说 dfs 函数。其中,initial 为初始节点, s 为栈,marked 用来纪录经由的节点。successor 函数用来征采下一个可能的节点,test_goal 函数用来判断该节点是否为目的节点。children 为可能的节点列表,遍历这些节点,将没有走过的节点压入栈中,并做纪录。

# find_path.py

from utils import Stack

def dfs(initial, _next = successor, _test = test_goal):

s: Stack = Stack()

marked = {initial}

s.push(initial)

while s:

parent: state = s.pop()

if _test(parent):

return parent

children = _next(parent)

for child in children:

if child not in marked:

marked.add(child)

s.push(child)

接下来,我们使用 DFS 算法寻找迷宫路径,并对征采到的迷宫路径举行可视化演示。

首先使用枚举,来示意路径的颜色, EMPTY 为正常节点,BLOCKED 为障碍节点,START 为迷宫入口,END 为迷宫出口,PATH 为征采的路径。

from enum import IntEnum

class Cell(IntEnum):

EMPTY = 255

BLOCKED = 0

START = 100

END = 200

PATH = 150

接下来,我们来界说迷宫。首先,我们接纳 Namedtuple 来界说迷宫每个节点的坐标:

class MazeLocation(NamedTuple):

row: int

col: int

首先为了利便确定节点之间的关系,我们在 Maze 类中界说了一个内部类 _Node, 用来纪录节点的状态,及节点的父节点。

class _Node:

def __init__(self, state, parent):

self.state = state

self.parent = parent

接着初始化,确定入口与出口的坐标,使用 np.random.choice 函数随机天生迷宫,并符号入口和出口。

def __init__(self, rows: int = 10, cols: int = 10,

sparse: float = 0.2, seed: int = 365,

start: MazeLocation = MazeLocation(0, 0),

end: MazeLocation = MazeLocation(9, 9), *,

grid: Optional[np.array] = None) -> None:

np.random.seed(seed)

self._start: MazeLocation = start

self._end: MazeLocation = end

self._grid: np.array = np.random.choice([Cell.BLOCKED, Cell.EMPTY],

(rows, cols), p=[sparse, 1 – sparse])

self._grid[start] = Cell.START

self._grid[end] = Cell.END

其次是 test_goal 方式,只要该节点坐标与目的节点相即可。

def _test_goal(self, m1: MazeLocation) -> bool:

return m1 == self._end

1

2

再就是 successor 方式,只要上下左右偏向的节点不是障碍节点且在界限之内,就纳入思量局限,加入列表之中。

List[MazeLocation]:

location: List[MazeLocation] = []

row, col = self._grid.shape

if m1.row + 1 < row and self._grid[m1.row + 1, m1.col] != Cell.BLOCKED:

location.append(MazeLocation(m1.row + 1, m1.col))

if m1.row – 1 >= 0 and self._grid[m1.row – 1, m1.col] != Cell.BLOCKED:

location.append(MazeLocation(m1.row – 1, m1.col))

if m1.col + 1 < col and self._grid[m1.row, m1.col + 1] != Cell.BLOCKED:

location.append(MazeLocation(m1.row, m1.col + 1))

if m1.col – 1 >= 0 and self._grid[m1.row, m1.col – 1] != Cell.BLOCKED:

location.append(MazeLocation(m1.row, m1.col – 1))

return location

显示路径, pause 为显示图像的距离,plot 为是否绘图标志。通过目的节点出发,遍历每一个节点的父节点,直到到达初始节点,并绘制路径图。

None:

if pause <= 0:

raise ValueError(‘pause must be more than 0’)

path: Maze._Node = self._search()

if path is None:

print(‘没有找到路径’)

return

path = path.parent

while path.parent is not None:

self._grid[path.state] = Cell.PATH

if plot:

self._draw(pause)

path = path.parent

print(‘Path Done’)

为了使用 DFS 算法,我们界说了 DepthFirstSearch 类,继续迷宫类。DepthFirstSearch 类重写了基类的 _search 方式,与我们之前界说的 dfs 函数界说相差无几。

class DepthFirstSearch(Maze):

def _search(self):

stack: Stack = Stack()

initial: DepthFirstSearch._Node = self._Node(self._start, None)

marked: Set[MazeLocation] = {initial.state}

stack.push(initial)

while stack:

parent: DepthFirstSearch._Node = stack.pop()

state: MazeLocation = parent.state

if self._test_goal(state):

return parent

children: List[MazeLocation] = self._success(state)

for child in children:

if child not in marked:

marked.add(child)

stack.push(self._Node(child, parent))

class DepthFirstSearch(Maze):

def _search(self):

stack: Stack = Stack()

initial: DepthFirstSearch._Node = self._Node(self._start, None)

marked: Set[MazeLocation] = {initial.state}

stack.push(initial)

while stack:

parent: DepthFirstSearch._Node = stack.pop()

state: MazeLocation = parent.state

if self._test_goal(state):

return parent

children: List[MazeLocation] = self._success(state)

for child in children:

if child not in marked:

marked.add(child)

stack.push(self._Node(child, parent))

原文链接:https://www.cnblogs.com/benming/p/12696877.html

本站声明:网站内容来源于网络,若有侵权,请联系我们,我们将及时处理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值