模态分析有许多问题属于一般性问题,并不属于特定章节。其中的一些在本章进行讲解。这里也描述了整个测试过程的一些附加信息,这是为了更深入地讨论测试以及在测试期间应该采取的步骤。这些信息来自作者数十年来进行的模态测试经验,其中的一些事项已经成为模态测试的标准很多年了。
但在此之前,让我们再次描述整个过程。图10-1显示了整个过程,这是一张内容丰富的大图,包含怎样和为什么进行实验模态测试,并将所有相关内容置于相应的上下文中。在理论章节末尾对这个过程进行了部分讨论。在这里将再次描述,但是从略微不同的角度。有时两次听到相同的内容是一件好事,用不同的描述方式来填补知识的空白和空缺,以便更好地全面理解这些内容。
图10-1 有限元模态分析和实验模态分析概览
现在有限元模型通常是一个以设计为目的的系统的理论近似。有限元模型对系统质量和刚度分布进行近似。这个过程产生了一个非常大而复杂的方程组。然后对这个方程组进行特征值求解,从中提取系统的频率和模态振型。生成的模型是实际系统的近似,模型也包含一些假设,这是有限元处理的一部分。这些模型可能总体上非常好,但是模型中存在一些固有假设,实验模态测试可以帮助提高有限元模型的精度及响应预测。
现在同样使用这组方程组,但通过使用拉普拉斯变换将其转换成拉普拉斯域的形式。这与使用有限元模型完成的工作并没有太大的不同,只是方程转化为不同的形式。请注意,B(s)是系统矩阵,H(s)是B(s)的逆矩阵,它是系统的传递函数。同样,在开发这个模型时,对质量、阻尼和刚度矩阵进行了一些假设。这些方程被变换到拉普拉斯域,便于利用一些数学技巧来简化处理一些方程。
现在这里的关键因素位于系统传递函数矩阵中,系统传递矩阵等于B(s)的伴随矩阵除以B(s)的行列式。B(s)的行列式包含特征方程,从中能得到系统的极点:频率和阻尼。伴随矩阵包含留数,它们与系统的模态振型直接相关。所以拉普拉斯域是获得与从有限元模型获得相同信息的另一种机制。
现在可以从系统传递函数中得到频响函数。可以为任何特定的输入-输出组合创建或综合出频响函数。从测试数据中获得的频响函数包含极其重要的信息:一个是留数,一个是极点。请记住,极点与模态频率相关,留数与系统的模态振型相关。
在综合处理中,可以综合出任何输入—输出组合的频响函数。所有的输入-输出组合都可以根据需要综合出尽可能多的频响函数,并且可以潜在地综合出频响函数矩阵中的所有项。如果至少生成了频响矩阵的一行或一列,那么,则有足够数量的数据用来描述系统的模态振型。
一旦产生了所有这些频响函数,极点(频率)和留数(模态振型)就潜藏在这些数据中。所以有理由认为,从测量数据来看,模态参数估计过程应该能够提取到极点(频率和阻尼)和留数(模态振型)。这是通常称为曲线拟合的参数估计的核心。应用数学算法去提取感兴趣的参数:频率、阻尼和留数(或模态振型)。
到这一步,为了形成系统矩阵、传递函数矩阵和频响函数矩阵,需要对系统的质量、阻尼和刚度做出假设。对于真实的结构,可以进行激励并捕获响应以获得由激励力而引起的系统的输入—输出现象。可以测量输入力和由输入力引起的系统响应以获得系统的传递特性。注意到,在这种方法中,没有关于系统质量、阻尼和刚度矩阵的假设:结构知道它的特性。这种用测量数据表征系统的方法是实验模态分析的核心。
一旦获得了时域数据,就可以使用快速傅里叶变换把这些数据从时域变换到频域。本质上,输出响应与输入力的比值将用于计算频响函数。这可以计算所有的测点,以获得频响矩阵相应的元素。然后对频响函数进行曲线拟合提取感兴趣的模态数据:频率、阻尼和留数(或模态振型)。当然,为了做到这一点,需要充分理解与数字信号处理、激励技术和模态参数估计等相关实验模态分析的许多重要概念。
如上所述是模态测试人员对怎样和为什么进行模态测试的整个过程的很不错的描述。
作者介绍
钱小猛,硕士毕业于浙江大学机械工程学院。具有扎实的模态分析理论功底和丰富的模态测试经验。曾参与开发试验模态分析软件,完成了多个基于Test.Lab的二次开发项目,对振动控制也有较深的研究。钱小猛私人微信:zjuchien001,请注明:单位+姓名
注:翻译自Peter Avitabile《Modal Testing - A Practitioner's Guide》,
翻译:钱小猛;校对:谭祥军
请你为《模态试验实用技术:实践者指南》的购买册数投票:
觉得不错,请点在看!
正版图书,评论数3400+扩展阅读
1.交稿了!《模态试验实用技术:实践者指南》交稿了!
2.什么是模态分析?(上)
3.什么是模态分析?(下)
4.Chapter1|1.1你能为我解释模态分析吗?
5.什么是频响函数FRF(一)?
6.什么是频响函数FRF(二)?