python结束线程池中任务_Python多线程----线程池以及线程实现异步任务

了解异步编程

楼主在工作中遇到了以下问题,开发接口爬取数据代码完成之后要写入redis缓存,但是在写入缓存的过程花费2-3s,进行这样就大大影响了接口的性能,于是想到了使用异步存储。

传统的同步编程是一种请求响应模型,调用一个方法,等待其响应返回.

异步编程就是要重新考虑是否需要响应的问题,也就是缩小需要响应的地方。因为越快获得响应,就是越同步化,顺序化,事务化,性能差化。

线程实现异步

思路:通过线程调用的方式,来达到异步非阻塞的效果,也就是说主程序无需等待线程执行完毕,仍然可以继续向下执行。

1.threading模块和thread模块

Python通过两个标准库thread和threading提供对线程的支持。thread提供了低级别的、原始的线程以及一个简单的锁。

threading 模块提供的其他方法:

threading.currentThread(): 返回当前的线程变量。

threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。

threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。

除了使用方法外,线程模块同样提供了Thread类来处理线程,Thread类提供了以下方法:

run(): 用以表示线程活动的方法。

start():启动线程活动。

join([time]): 等待至线程中止。这阻塞调用线程直至线程的join() 方法被调用中止-正常退出或者抛出未处理的异常-或者是可选的超时发生。

isAlive(): 返回线程是否活动的。

getName(): 返回线程名。

setName(): 设置线程名。

同步阻塞:

1 import threading,time

2

3 def thead(num):

4 time.sleep(1)

5 print("阻塞程序%s开始执行"%num)

6 time.sleep(3)

7 print("阻塞程序%s执行完毕"%num)

8

9 def main():

10 print("主方法开始执行")

11

12 for i in range(1,3):

13 thead(i)

14

15 print("主方法执行完毕")

16 return

17

18 if __name__ == '__main__':

19 print(time.ctime())

20 num = main()

21 print("返回结果为%s"%num)

22 print(time.ctime())

Wed Nov 21 09:22:56 2018

主方法开始执行

阻塞程序1开始执行

阻塞程序1执行完毕

阻塞程序2开始执行

阻塞程序2执行完毕

主方法执行完毕

返回结果为None

Wed Nov 21 09:23:04 2018

异步,无需等待线程执行

import threading,time

def thead(num):

# time.sleep(1)

print("线程%s开始执行"%num)

time.sleep(3)

print("线程%s执行完毕"%num)

def main():

print("主方法开始执行")

#创建2个线程

poll = []#线程池

for i in range(1,3):

thead_one = threading.Thread(target=thead, args=(i,))

poll.append(thead_one) #线程池添加线程

for n in poll:

n.start() #准备就绪,等待cpu执行

print("主方法执行完毕")

return

if __name__ == '__main__':

print(time.ctime())

num = main()

print("返回结果为%s"%num)

print(time.ctime())

Wed Nov 21 09:48:00 2018

主方法开始执行

主方法执行完毕

返回结果为None

Wed Nov 21 09:48:00 2018

线程1开始执行

线程2开始执行

线程1执行完毕

线程2执行完毕

2.concurrent.futures模块

concurrent.futures模块实现了对threading(线程)和multiprocessing(进程)的更高级的抽象,对编写线程池/进程池提供了直接的支持。

从Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类,ThreadPoolExecutor和ProcessPoolExecutor继承了Executor,分别被用来创建线程池和进程池的代码。(暂时只介绍线程池的使用)

concurrent.futures模块的基础是Exectuor,Executor是一个抽象类,它不能被直接使用。但是它提供的两个子类ThreadPoolExecutor和ProcessPoolExecutor却是非常有用,顾名思义两者分别被用来创建线程池和进程池的代码。我们可以将相应的tasks直接放入线程池/进程池,不需要维护Queue来操心死锁的问题,线程池/进程池会自动帮我们调度。

Future这个概念你可以把它理解为一个在未来完成的操作,这是异步编程的基础,传统编程模式下比如我们操作queue.get的时候,在等待返回结果之前会产生阻塞,cpu不能让出来做其他事情,而Future的引入帮助我们在等待的这段时间可以完成其他的操作。

Future Objects:Future类封装了可调用的异步执行.Future 实例通过 Executor.submit()方法创建。

submit(fn, *args, **kwargs):调度可调用的fn,作为fn(args kwargs)执行,并返回一个表示可调用的执行的Future对象。

ThreadPoolExecutor:ThreadPoolExecutor是一个Executor的子类,它使用线程池来异步执行调用。

concurrent.futures.ThreadPoolExecutor(max_workers=None, thread_name_prefix=''):Executor子类,使用max_workers规格的线程池来执行异步调用。

在Flask应用中使用异步redis:

from flask import Flask

import time

from concurrent.futures import ThreadPoolExecutor

executor = ThreadPoolExecutor()

app = Flask(__name__)

@app.route('/')

def update_redis():

executor.submit(do_update)

return 'ok'

def do_update():

time.sleep(3)

print('start update cache')

time.sleep(1)

print("end")

if __name__ == '__main__':

app.run(debug=True)

1364902-20181227152453589-1500159318.gif

“ok“在更新缓存前已经返回。

本文到这里就结束了,着重介绍了线程实现异步的方法。当然还有其他的方法,比如yied实现,还有asyncio模块,后续会继续更新异步编程的文章。

温馨提示

本文代码是在python3.5版本测试运行。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值