了解异步编程
楼主在工作中遇到了以下问题,开发接口爬取数据代码完成之后要写入redis缓存,但是在写入缓存的过程花费2-3s,进行这样就大大影响了接口的性能,于是想到了使用异步存储。
传统的同步编程是一种请求响应模型,调用一个方法,等待其响应返回.
异步编程就是要重新考虑是否需要响应的问题,也就是缩小需要响应的地方。因为越快获得响应,就是越同步化,顺序化,事务化,性能差化。
线程实现异步
思路:通过线程调用的方式,来达到异步非阻塞的效果,也就是说主程序无需等待线程执行完毕,仍然可以继续向下执行。
1.threading模块和thread模块
Python通过两个标准库thread和threading提供对线程的支持。thread提供了低级别的、原始的线程以及一个简单的锁。
threading 模块提供的其他方法:
threading.currentThread(): 返回当前的线程变量。
threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。
threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。
除了使用方法外,线程模块同样提供了Thread类来处理线程,Thread类提供了以下方法:
run(): 用以表示线程活动的方法。
start():启动线程活动。
join([time]): 等待至线程中止。这阻塞调用线程直至线程的join() 方法被调用中止-正常退出或者抛出未处理的异常-或者是可选的超时发生。
isAlive(): 返回线程是否活动的。
getName(): 返回线程名。
setName(): 设置线程名。
同步阻塞:
1 import threading,time
2
3 def thead(num):
4 time.sleep(1)
5 print("阻塞程序%s开始执行"%num)
6 time.sleep(3)
7 print("阻塞程序%s执行完毕"%num)
8
9 def main():
10 print("主方法开始执行")
11
12 for i in range(1,3):
13 thead(i)
14
15 print("主方法执行完毕")
16 return
17
18 if __name__ == '__main__':
19 print(time.ctime())
20 num = main()
21 print("返回结果为%s"%num)
22 print(time.ctime())
Wed Nov 21 09:22:56 2018
主方法开始执行
阻塞程序1开始执行
阻塞程序1执行完毕
阻塞程序2开始执行
阻塞程序2执行完毕
主方法执行完毕
返回结果为None
Wed Nov 21 09:23:04 2018
异步,无需等待线程执行
import threading,time
def thead(num):
# time.sleep(1)
print("线程%s开始执行"%num)
time.sleep(3)
print("线程%s执行完毕"%num)
def main():
print("主方法开始执行")
#创建2个线程
poll = []#线程池
for i in range(1,3):
thead_one = threading.Thread(target=thead, args=(i,))
poll.append(thead_one) #线程池添加线程
for n in poll:
n.start() #准备就绪,等待cpu执行
print("主方法执行完毕")
return
if __name__ == '__main__':
print(time.ctime())
num = main()
print("返回结果为%s"%num)
print(time.ctime())
Wed Nov 21 09:48:00 2018
主方法开始执行
主方法执行完毕
返回结果为None
Wed Nov 21 09:48:00 2018
线程1开始执行
线程2开始执行
线程1执行完毕
线程2执行完毕
2.concurrent.futures模块
concurrent.futures模块实现了对threading(线程)和multiprocessing(进程)的更高级的抽象,对编写线程池/进程池提供了直接的支持。
从Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类,ThreadPoolExecutor和ProcessPoolExecutor继承了Executor,分别被用来创建线程池和进程池的代码。(暂时只介绍线程池的使用)
concurrent.futures模块的基础是Exectuor,Executor是一个抽象类,它不能被直接使用。但是它提供的两个子类ThreadPoolExecutor和ProcessPoolExecutor却是非常有用,顾名思义两者分别被用来创建线程池和进程池的代码。我们可以将相应的tasks直接放入线程池/进程池,不需要维护Queue来操心死锁的问题,线程池/进程池会自动帮我们调度。
Future这个概念你可以把它理解为一个在未来完成的操作,这是异步编程的基础,传统编程模式下比如我们操作queue.get的时候,在等待返回结果之前会产生阻塞,cpu不能让出来做其他事情,而Future的引入帮助我们在等待的这段时间可以完成其他的操作。
Future Objects:Future类封装了可调用的异步执行.Future 实例通过 Executor.submit()方法创建。
submit(fn, *args, **kwargs):调度可调用的fn,作为fn(args kwargs)执行,并返回一个表示可调用的执行的Future对象。
ThreadPoolExecutor:ThreadPoolExecutor是一个Executor的子类,它使用线程池来异步执行调用。
concurrent.futures.ThreadPoolExecutor(max_workers=None, thread_name_prefix=''):Executor子类,使用max_workers规格的线程池来执行异步调用。
在Flask应用中使用异步redis:
from flask import Flask
import time
from concurrent.futures import ThreadPoolExecutor
executor = ThreadPoolExecutor()
app = Flask(__name__)
@app.route('/')
def update_redis():
executor.submit(do_update)
return 'ok'
def do_update():
time.sleep(3)
print('start update cache')
time.sleep(1)
print("end")
if __name__ == '__main__':
app.run(debug=True)
“ok“在更新缓存前已经返回。
本文到这里就结束了,着重介绍了线程实现异步的方法。当然还有其他的方法,比如yied实现,还有asyncio模块,后续会继续更新异步编程的文章。
温馨提示
本文代码是在python3.5版本测试运行。