对于公考,广大考生也在紧锣密鼓的学习、复习中,相信经过这一段时间的积累,同学们对于行测也有了一定的认知和了解,可能有的同学认为数量关系“太难了”不愿意学习,甚至是想放弃。但是,所有的数量关系题目都如我们想象的那样复杂难解吗?其实不然,那今天中公教育专家就和大家一起来学习一个好用的解题方法——“整除”。
一、什么是“整除”
若整数a除以非零的整数b,商为整数,且余数为零,那我们就说a能被b整除。如:30÷5=6,即30能被5整除。
二、整除的题干特征
什么样的题目可以应用整除这种方法进行解题呢?我们一起来了解一下!
1、数据形式判断整除:题干中出现比例、小数、分数、百分数
我们以“比例”数据形式为例,一起来认识一下整除!
例:某班级党员与非党员人数之比为2:7,则班级人数有哪些特征呢?
题干中出现了比例关系,即党员人数:非党员人数=2:7,说明党员人数是2的倍数,而非党员是7的倍数,又因为人数一定为整数,所以党员人数能被2整除,非党员人数能被7整除。我们还知道:全班总人数=党员人数+非党员人数,由此可知总人数能被9整除;同理可知,党员与非党员人数差值则能被5整除。
2、文字描述判断整除:题干中出现“整除”、“倍数”、“均”、“每”等。
例:若从2、4、5、7、8这五个数字中任意取出4个数字,使其组成的四位数是9的倍数,那么为哪4个数字?
题干中出现了“倍数”的文字描述,是9的倍数,即组成的数字能被9整除。我们知道,如果一个数能被9整除,那么这个数各个数位上的数字之和就能被9整除。那我们将这5个数任意取4个数字加和,结果如下:2+4+5+7=18;2+4+5+8=19;2+4+7+8=21;2+5+7+8=22;4+5+7+8=24。这五个和中只有18能被9整除,因此4个数字分别为2、4、5、7。