一、数据中台是什么?“ 是数据服务(Data API)工厂”,数据中台的核心是Data API。
对于业务的价值是“加速从数据到价值的过程,提高企业的响应能力“。
数据中台就是要将这些能力都沉淀到一个体系中,变成数据开发的能力,变成可以复用,二次加工的数据服务工厂,加快数据开发和协作的速度。
1.云计算为数据智能提供了基础算法
2.行业算法(经验转化而来的)是智能处理数据的主要工具。
3.数据+智能的平台和能力,前提是基础设施的云化和核心技术的互联网化。
[数据中台]:数据处理能力的框架,通常把这种能力框架称为
舆论往往会更强调技术的作用,强调技术对业务的推动作用,但事实上,在商业领域,更多的时候,技术发展都是跟着业务走的,技术的发展常常来自业务需求和业务场景的倒逼。
数据中台不是一套软件系统,也不是一个标准化产品。数据中台更多地指向企业的业务目标,也即帮助企业沉淀业务能力,提升业务效率,最终完成数字化转型。
第一阶段到第二阶段:主要解决数据的【看】,能够对业务进行评估;
第二阶段到第三阶段:解决数据的【用】,业务能够拿着评估结果去改进工作;
第三阶段到第四阶段:数据化运营,数据赋能业务高效运营。
即【一切业务数据化,一切数据业务化】
数据中台需要把云和端和起来
要通过数据来改善业务,就要和线上一样能做到行为可监测,数据可收集,这是前提。另外,要使用这些数据,要有云来存储和处理这些数据,并且最终通过AI算法来赋能业务来增长生意。
要做好数据中台,需要把两者合起来做。智能端负责数据的收集,云负责数据的存储、计算、赋能。端能够丰富云,云能够赋能端。
所以未来的数据中台一定是「AI驱动的数据中台」,这个中台的能力要包括「计算平台+算法模型+智能硬件」,不仅要在端上具备视觉数据的收集和分析能力,而且还要能通过Face ID,帮助企业去打通业务数据,最终建立线上线下触达和服务消费者的能力。
数据中台需要具备三大能力
1.数据模型能力
业务上,业务抽象能解决80%共性问题,开放的系统架构来解决20%的个性问题,但同时又要把平台上的业务逻辑分开,因为不同的业务逻辑之间可能有冲突。表现为数据的中心化,即数据的高内聚、低耦合
2.AI算法模型能力。
要实现数据业务化,前提是做到数据的资产化。
比如说数据的标签化,背后就有投入产出比的考量:通过标签,广告主可以非常方便快捷地去建立自己的人群包,实现精准营销,同时投放的ROI也是可见的、透明的,广告主可以自己去评估数据资产的使用情况。
3.行业的应用能力,即数据业务化能力
和数据中心化类似,数据业务化也需要很强的行业经验来指导,建立合适的业务场景,在场景里面去使用数据,从而体现数据的价值,来大大扩展数据在行业中的应用能力。
例如:人群画像越清晰,服务就会越精准
1)定义埋点规范,同一个人就用同一个标识,ID打通,也就是所谓的One ID;
其次,还会碰上一家人使用一个登录帐号的问题,那么就需要建立同人的数据模型,通过一些方式,比如,IP网段是不是一样,来分辨出具体的那个人,建立AID(Alibaba ID);
2)每个人还有各种网络行为,要如何把这些行为结构化,装到各种框架里面?需要把行为的分类树做出来。这个分类树非常细,甚至能够把一个人的发质都结构化了。
3)需要通过算法模型,把所有的标签都贴回到人上面。
4)把这些标签提供给广告主,让广告主能够通过标签去建立人群画像,进行人群细分,以及建立投放用的人群包。