剑指offer有用python版的吗_java&python版剑指offer(二)

本文涉及的题目:

1、用两个栈实现队列

2、旋转数组中的最小数字

3、斐波那契数列

4、跳台阶

5、变态跳台阶

6、矩形覆盖

1、用两个栈实现队列

问题描述

用两个栈来实现一个队列,完成队列的Push和Pop操作。 队列中的元素为int类型。

思路解析

定义两个stack,分别是stack1和stack2,队列的push和pop是在两侧的,push操作很简单,只需要在stack1上操作,而pop操作时,先将stack1的所有元素push到stack2中,然后stack2的pop返回的元素即为目标元素,然后把stack2中的所有元素再push到stack1中。

代码实现

java

import java.util.Stack;

public class Solution {

Stack stack1 = new Stack();

Stack stack2 = new Stack();

public void push(int node) {

stack1.push(node);

}

public int pop() {

int temp;

while(!stack1.empty()){

temp = stack1.pop();

stack2.push(temp);

}

int res = stack2.pop();

while(!stack2.empty()){

temp = stack2.pop();

stack1.push(temp);

}

return res;

}

}

python

class Solution:

def __init__(self):

self.stack1 = []

self.stack2 = []

def push(self, node):

# write code here

self.stack1.append(node)

def pop(self):

# return xx

if not self.stack1:

return None

while self.stack1:

self.stack2.append(self.stack1.pop())

res = self.stack2.pop()

while self.stack2:

self.stack1.append(self.stack2.pop())

return res

2、旋转数组中的最小数字

问题描述

把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。 输入一个非递减排序的数组的一个旋转,输出旋转数组的最小元素。 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。 NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。

思路解析

从头到尾两两相邻元素进行比较进行,如果前面一个元素大于后面一个元素,则返回后面一个元素。如果从头到尾都没有满足条件的元素,则返回第一个元素。

代码实现

java

import java.util.ArrayList;

public class Solution {

public int minNumberInRotateArray(int [] array) {

if(array.length==0){

return 0;

}

for(int i=0;i

if(array[i] > array[i+1]){

return array[i+1];

}

}

return array[0];

}

}

python

class Solution:

def minNumberInRotateArray(self, rotateArray):

# write code here

if not rotateArray:

return 0

for i in range(len(rotateArray)-1):

if rotateArray[i] > rotateArray[i+1]:

return rotateArray[i+1]

return rotateArray[0]

3、斐波那契数列

问题描述

大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项。n<=39

思路解析

只需要定义两个整形变量,b表示后面的一个数字,a表示前面的数字即可。每次进行的变换是:temp = a,a=b,b=temp + b

代码实现

java

public class Solution {

public int Fibonacci(int n) {

if (n<=0)

return 0;

int a=1,b = 1;

int temp;

for(int i=2;i

temp = a;

a = b;

b = temp + b;

}

return b;

}

}

python

# -*- coding:utf-8 -*-

class Solution:

def Fibonacci(self, n):

# write code here

if n<=0:

return 0

a = b = 1

for i in range(2,n):

a,b = b,a+b

return b

4、跳台阶

问题描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

思路解析

一道典型的动态规划问题:

我们用f(n)表示跳上n级台阶的跳法。

可以看出,f(1)=1;f(2)=2。

那么,假设到了n级台阶,那么上一步就有两种情况,跳一步跟跳两步。

如果是跳一步跳上了n级台阶,那么他上一步在n-1级台阶,那么有多少种方法跳到n-1级呢,显然是f(n-1),同理,如果跳两步,那么上一步在n-1级台阶,此时方法种数是f(n-1),所以总数是f(n)=f(n-1)+f(n-2)。

反向思考,但是编写代码的时候要正向求解,首先根据f(1)和f(2)计算出f(3),再根据f(2)和f(3)计算出f(4)…..一次类推计算出第n项。很容易理解这种思路的时间复杂度是O(n).

代码实现

java

public class Solution {

public int JumpFloor(int target) {

if(target <= 0)

return 0;

if(target <= 2)

return target;

int a=1,b=2;

int temp;

for(int i=3;i<=target;i++){

temp = a;

a = b;

b += temp;

}

return b;

}

}

python

# -*- coding:utf-8 -*-

class Solution:

def jumpFloor(self, number):

# write code here

if number <= 0:

return 0

if number == 1:

return 1

if number == 2:

return 2

res = [1,2]

for i in range(2,number):

res.append(res[-1] + res[-2])

return res[-1]

5、变态跳台阶

问题描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

思路解析

和普通跳台阶问题同样的思路,反向思考,正向写代码。我们用f(n)表示跳上n级台阶的跳法。那么,假设到了n级台阶,我们可以一步上来,也可以从第一级跳n-1级上来,从第二级跳n-2级上来。。。从n-1级跳一步上来,所以f(n) = sum(f(1) + f(2) +...+f(n-1)) + 1

代码实现

java

public class Solution {

public int JumpFloorII(int target) {

if(target<=0)

return 0;

int sumPath = 0;

int path = 0;

for(int i=0;i

path = sumPath + 1;

sumPath = sumPath * 2 + 1;

}

return path;

}

}

python

# -*- coding:utf-8 -*-

class Solution:

def jumpFloorII(self, number):

# write code here

if number <= 0:

return 0

res = []

sumPath = 0

for i in range(0,number):

res.append(sumPath + 1)

sumPath = sumPath * 2 + 1

return res[-1]

6、矩形覆盖

问题描述

我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

思路解析

我们用f(n)表示覆盖2*n的矩形的方法数。

可以看出,f(1)=1;f(2)=2。

那么,假设到了n,那么上一步就有两种情况,在n-1的时候,竖放一个矩形,或着是在n-2时,横放两个矩形(这里不能竖放两个矩形,因为放一个就变成了n-1,那样情况就重复了),所以总数是f(n)=f(n-1)+f(n-2)。

反向思考,但是编写代码的时候要正向求解,首先根据f(1)和f(2)计算出f(3),再根据f(2)和f(3)计算出f(4)…..一次类推计算出第n项。很容易理解这种思路的时间复杂度是O(n).

代码实现

java

public class Solution {

public int RectCover(int target) {

if(target <= 0)

return 0;

if(target <= 2)

return target;

int a=1,b=2;

int temp;

for(int i=3;i<=target;i++){

temp = a;

a = b;

b += temp;

}

return b;

}

}

python

# -*- coding:utf-8 -*-

class Solution:

def rectCover(self, number):

# write code here

if number == 0:

return 0

if number<=2:

return number

res = [1,2]

for i in range(2,number):

res.append(res[-1] + res[-2])

return res[-1]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值