python 写csv_Python数据分析,文本数据如何读取?

e3c189c98cde6dbe6b26591c0ae06e2d.png

在家无聊,不如跟我一起学Python,从数据获取、数据清洗,到数据探索、数据可视化,我会的都会分享,不会的我会继续学习,学无止境,今天分享的是文本数据的导入,一起学习吧!

一、CSV文件读取
打开原始的数据如下所示,通过写代码读取数据,当我们处理的数据量很大时,通过写代码的方式,简洁并且高效。

8fe7fe39bc513f33a17b1b79e885b722.png


程序代码都放到代码框里了,大家一定要动手多练练!

!type D:python数据分析数据shuju1.csv #查看数据情况
!type D:python数据分析数据shuju1.csv #查看数据情况

a3a04f995b522f202a957e6f15347fa5.png
df = pd.read_table(open('D:/python数据分析/数据/shuju1.csv'),sep=',') #指定分隔符
df

df08e6601610a528f56c1361c3cedeae.png
df = pd.read_csv(open('D:/python数据分析/数据/shuju1.csv'),index_col='id') #指定行索引
df

7983bc2b086e622757dd0c9319e0bda3.png
df = pd.read_csv(open('D:/python数据分析/数据/shuju1.csv'),index_col='id') #指定行索引 
df

39be732e5bb35dee656b8478f9ae276d.png

二、TXT文件读取
除了数值型数据,这种文本数据在数据分析时,也占了很大的比重,比如商品评论分析,网站舆情监测分析,前期都要做很多文本数据的处理,数据处理的好坏,关乎到数据结果,本例的文本数据如下

4d919486f60950487a30d59146220fac.png
!type D:python数据分析数据shuju3.txt #数据情况
!type D:python数据分析数据shuju3.txt #数据情况

649cec35721892f670263f0c1d84edca.png
!type D:python数据分析数据shuju3.txt #数据情况

8cb10adb577fb02454614fce5c15a550.png
df = pd.read_table(open('D:/python数据分析/数据/shuju3.txt'),sep='s+') #正则表达式的使用
df

100bd4b70ee822b2923ab7ad0592f5a1.png
df = pd.read_table(open('D:/python数据分析/数据/shuju3.txt'),sep='s+') #正则表达式的使用 
df

95240c068a41255c8c32ba35a97201b9.png

三、文本数据存储
数据清洗阶段完成后,可以将“干净”的数据导出,作为一个新样本研究,其研究质量会有大幅度的提升。

df.to_csv('D:/python数据分析/数据/out1.csv') #存储文本数据
!type D:python数据分析数据out1.csv

b23b0d6fd974d27936f7d161dde4ceb7.png
df.to_csv('D:/python数据分析/数据/out2.csv',sep='?') #指定分隔符,存储文本数据
!type D:python数据分析数据out2.csv

67c8eed13b89eb895d7230efc728762d.png
df.to_csv('D:/python数据分析/数据/out3.csv',index=False) #处理行和列索引
!type D:python数据分析数据out3.csv

52e2109c554acb94235ebffae9483cd9.png
df.to_csv('D:/python数据分析/数据/out3.csv',index=False) #处理行和列索引 
!type D:python数据分析数据out3.csv

9bdf4c73cc7d76bd7e8911d5b003c61f.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值