
100天精通Python从入门到就业
全网最细Python零基础手把手入门教程,全栈系列课程包括:基础篇、进阶篇、爬虫篇、数据分析、可视化、数据挖掘、机器学习等,持续更新中(每周1-2篇),适合零基础和进阶提升的同学。订阅专栏后进Python全栈交流群领取全栈教程视频和300本IT书籍资料,手把手教学、专业问题答疑和小伙伴们共同进步!
袁袁袁袁满
CSDN全站铁粉总数Top1+粉丝总数Top2,深受60万粉丝喜爱的全栈博主。专注前沿技术、产品测评、工具推广,多个平台专家博主,交流合作私信+
展开
-
100天精通Python(可视化篇)——第89天:Bokeh库绘图可视化基础入门(参数说明+案例实战)
专栏导读 一、Bokeh是什么? 二、安装与导入 三、Bokeh接口介绍 四、创建图表 五、添加自定义渲染器 切换主题 添加图例 图例位置 图例方向 图例背景和边界 图例文本的外观 行列布局 网格布局原创 2023-05-29 06:58:26 · 13758 阅读 · 269 评论 -
100天精通Python(可视化篇)——第88天:全网最全Seaborn库常用绘图3万字总结(参数说明+案例实战)
一、Seaborn介绍 1.1 介绍 1.2 安装 1.3 风格设置 1.3.1 style(风格) 1.3.2 context(环境设置) 1.4 调色盘设置 1.5 数据集下载 二、Relational plots(关系图) 2.1 scatterplot(散点图) 2.2 lineplot(线图) 2.3 rel原创 2023-05-23 10:51:09 · 11528 阅读 · 349 评论 -
100天精通Python(可视化篇)——第87天:matplotlib绘制不同种类炫酷雷达图参数说明+代码实战(普通、堆叠、多个、矩阵、极坐标雷达图)
1. 雷达图 1)介绍 2)参数说明2. 基本雷达图3. 堆叠雷达图4. 六边形战士5. 多个雷达图6. 雷达图矩阵7. 极坐标雷达图原创 2023-05-15 06:56:41 · 11302 阅读 · 266 评论 -
100天精通Python(可视化篇)——第86天:matplotlib绘制不同种类炫酷热力图参数说明+代码实战
一、热力图介绍 1. 介绍 2. 参数说明二、绘制热力图 1. 普通热力图 2. 添加坐标轴和标题 3. 添加热力标尺 4. 添加色块数值 5. 修改热力图颜色 6. 突出特殊数据三、应用场景 1. 适用场景 2. 不适用场景原创 2023-05-08 06:54:31 · 9601 阅读 · 157 评论 -
100天精通Python(可视化篇)——第85天:matplotlib绘制不同种类炫酷气泡图参数说明+代码实战(网格、自定义颜色、钟型、交互、打卡、动态气泡图)
专栏导读 1. 气泡图介绍 1)介绍 2)参数说明 2. 普通气泡图 3. 网格气泡图 4. 自定义气泡图颜色 5. 不同颜色气泡图 6. 钟型气泡图 7. 交互气泡图 8. 打卡气泡图 9. 动态气泡图原创 2023-04-24 06:48:17 · 13314 阅读 · 270 评论 -
100天精通Python(可视化篇)——第84天:matplotlib绘制不同种类炫酷直方图参数说明+代码实战(普通、多变量、堆叠、分组、多个子图、折线、曲线直方图)
专栏导读 1. 直方图介绍 1)介绍 2)直方图的五种形态 (1)标准型 (2)孤岛型 (3)双峰型 (4)折齿型 (5)陡壁型 3)参数说明 2. 单变量直方图 3. 多变量直方图 4. 堆叠直方图 5. 分组直方图 6. 多个子图的直方图 7. 折线直方图 8. 正态原创 2023-04-17 06:45:49 · 13356 阅读 · 294 评论 -
100天精通Python(可视化篇)——第83天:matplotlib绘制不同种类炫酷箱形图参数说明+代码实战(水平、缺口、群组、堆叠、核密度、小提琴箱形图)
1. 箱形图介绍 1)箱形图介绍 2)怎么看箱型图? 3)参数说明2. 普通箱型图 1)绘图 2)解释说明3. 水平箱形图4. 带有缺口的箱形图5. 群组箱形图6. 堆叠箱形图7. 核密度估计箱形图8. 小提琴箱形图原创 2023-04-10 06:48:36 · 12599 阅读 · 226 评论 -
100天精通Python(可视化篇)——第82天:matplotlib绘制不同种类炫酷散点图参数说明+代码实战(二维散点图、三维散点图、散点图矩阵)
1. 参数说明2. 两主特征:二维散点图 1)普通散点图 2)文字标签散点图 3)带颜色映射的散点图 4)ArcGIS散点图 5)气泡图 6)分类散点图 7)线性拟合散点图 8)分类+线性拟合散点图3. 三主特征:三维散点图 1)三维散点图 2)三维分类散点图 3)三维波浪分类散点图4. 多主特征:二维散点图矩阵 1)二维散点图矩阵 2)二维分类散点图矩阵原创 2023-04-03 07:07:23 · 13562 阅读 · 310 评论 -
100天精通Python(可视化篇)——第81天:matplotlib绘制不同种类炫酷饼图参数说明+代码实战(自定义、百分比、多个子图、圆环、嵌套饼图)
专栏导读 0. 前言 1. 参数说明 2. 普通饼图 3. 百分比饼图 4. 突出某一块的饼图 5. 自定义颜色的饼图 6. 多个子图 7. 圆环饼图 8. 圆环分离饼图 9. 饼图+圆环图组合 10. 多层圆环饼图原创 2023-03-27 06:49:29 · 13010 阅读 · 242 评论 -
100天精通Python(可视化篇)——第80天:matplotlib绘制不同种类炫酷柱状图代码实战(簇状、堆积、横向、百分比、3D柱状图)
0. 专栏导读 1. 普通柱状图 2. 簇状柱形图 3. 堆积柱形图 4. 横向柱状图 5. 横向双向柱状图 6. 百分比堆积柱形图 7. 3D柱形图 8. 3D堆积柱形图 9. 3D百分比堆积柱形图原创 2023-03-20 06:45:00 · 17251 阅读 · 414 评论 -
100天精通Python(可视化篇)——第79天:matplotlib绘制不同种类炫酷折线图代码实战(网格、趋势、对比、百分比、多条折线、堆积、百分比堆积、多坐标子图、3D折线图)
0. 专栏导读 1. 普通折线图 2. 网格折线图 3. 趋势折线图 4. 对比折线图 5. 百分比折线图 6. 多条折线图 7. 多坐标子图 8. 堆积折线图 9. 百分比堆积折线图 10. 3D折线图原创 2023-03-13 07:00:00 · 15339 阅读 · 289 评论 -
100天精通Python(可视化篇)——第78天:matplotlib绘图模块基础入门大全
一、课程介绍 为什么要学习matplotlib 什么是matplotlib二、绘制折线图 基础绘图 设置图片大小和分辨率 调整X或者Y轴上的刻度 设置中文显示 坐标轴添加描述信息 绘制网格 双折线图 添加图例 自定义绘制图形的风格 保存图片三、绘制散点图 普通绘图 双散点图四、绘制条形图 绘制竖着条形图 绘制横着条形图 绘制多条形图五、直方图:his原创 2023-03-06 06:45:00 · 18573 阅读 · 419 评论 -
100天精通Python(可视化篇)——第77天:数据可视化入门基础大全(万字总结+含常用图表动图展示)
1. 什么是数据可视化? 2. 为什么会用数据可视化? 3. 数据可视化的好处? 4. 如何使用数据可视化? 5. Python数据可视化常用工具 1)Matplotlib绘图 2)Seaborn绘图 3)Bokeh绘图 6. 常用图表介绍及其应用场景 1)折线图 2)柱状图 3)饼图 4)散点图 5)箱形图 6)区域原创 2023-02-27 06:45:00 · 19632 阅读 · 384 评论 -
100天精通Python(数据分析篇)——第76天:Pandas数据类型转换函数pd.to_numeric(参数说明+实战案例)
一、to_numeric参数说明 0. 介绍 1. arg 1)接收列表 2)接收一维数组 3)接收Series对象 2. errors 1)`errors='coerce'` 2)`errors = 'ignore'` 3. downcast 1)downcast='integer' 2)downcast='signed' 3)downcast=原创 2023-02-20 07:00:00 · 9691 阅读 · 35 评论 -
100天精通Python(数据分析篇)——第75天:Pandas数据预处理之数据标准化
专栏导读 1. 数据标准化是什么? 2. 数据标准化的作用 3. 数据标准化的方法 4. 离差标准化 5. 标准差标准化 6. 小数定标标准化原创 2023-02-13 07:00:00 · 16677 阅读 · 281 评论 -
100天精通Python(数据分析篇)——第74天:Panda索引标签修改函数大全(参数说明+代码实战)
一、添加标签前后缀 1. add_prefix('str') 2. add_suffix('str')二、标签重命名 1. set_axis() 1)修改行标签 2)修改列标签 2. rename() 1)直接替换标签名 2)用字符串函数处理标签名三、标签排序 1. reset_index 2. reindex() 1)默认情况修改行标签排列顺序 2)原创 2023-02-06 07:00:00 · 12295 阅读 · 30 评论 -
100天精通Python(数据分析篇)——第73天:Pandas文本数据处理方法之查找、替换、拼接、正则、虚拟变量
一、Python字符串内置方法 1. 文本查找 2. 文本替换 3. 文本拼接 4. 正则提取二、Pandas实现文本查找 1. str.startswith(字符串) 2. str.endswith(字符串) 3. str.index(字符串, start=0, end=len(string)) 4. str.rindex(字符串, start=0, end=len(string)) 5. str.find(字符串, star原创 2023-01-29 07:00:00 · 16173 阅读 · 257 评论 -
100天精通Python(数据分析篇)——第72天:Pandas文本数据处理方法之判断类型、去除空白字符、拆分和连接
一、Python字符串内置方法1. 判断类型2. 去除空白字符3. 拆分和连接二、Pandas判断类型 1. str.isspace() 2. str.isalnum() 3. str.isalpha() 4. str.isdecimal() 5. str.isdigit() 6. str.isnumeric() 7. str.istitle() 8. str.islower() 9. str.isupper()三、Pan原创 2023-01-16 07:00:00 · 14134 阅读 · 216 评论 -
100天精通Python(数据分析篇)——第71天:Pandas文本数据处理方法之str/object类型转换、大小写转换、文本对齐、获取长度、出现次数、编码
1. 文本数据类型介绍 1)类型介绍 2)类型转换 3)类型区别 区别1:统计字符串时 区别2:检查字符串时2. Python字符串内置方法 1) 大小写转换 2) 文本对齐 3)获取长度 4)获取出现次数 5)编码3. Pandas怎么使用内置方法? 1) 大小写转换 2) 文本对齐 3)获取长度 4)获取出现次数 5)编码4. 注意事项原创 2023-01-09 07:00:00 · 14782 阅读 · 322 评论 -
100天精通Python(数据分析篇)——第70天:Pandas常用排序、排名方法(sort_index、sort_values、rank)
一、按索引排序:sort_index() 1. Series类型排序 1)升序 2)降序 2. DataFrame类型排序 1)按行索引排序 2)按列索引排序二、按值排序:sort_values() 1. Series类型排序 1)升序 2)降序 2. DataFrame类型排序 1)单列排序 2)多列排序 3)排序算法原创 2022-12-26 07:00:00 · 12681 阅读 · 250 评论 -
100天精通Python(数据分析篇)——第69天:Pandas常用数据筛选方法(between、isin、loc、iloc)
一、布尔索引二、between()三、isin() 1. 单列筛选 2. 多列筛选 3. 通过字典的形式传递多个条件 4. 删除异常值所在行 5. isnotin实现四、loc、iloc(重要) 0. 创建DataFrame 1. 提取行数据 2. 提取列数据 3. 提取多列数据 4. 提取指定行、指定列数据 5. 提取所有数据 6. 提取指定数据行原创 2022-12-19 07:00:00 · 11091 阅读 · 269 评论 -
100天精通Python(数据分析篇)——第68天:Pandas数据清洗函数大全(判断缺失、删除空值、填补空值、替换元素、分割元素)
一、drop():删除指定行列 1. 删除指定行 2. 删除指定列 二、del():删除指定列 三、isnull():判断是否为缺失 1. 判断是否为缺失 2. 判断哪些列存在缺失 3. 统计缺失个数 四、notnull():判断是否不为缺失 五、dropna():删除缺失值 1. 导入数据 2. 删除含有NaN值的所有行 3. 删除含有Na原创 2022-12-12 07:00:00 · 12707 阅读 · 310 评论 -
100天精通Python(数据分析篇)——第67天:Pandas数据连接、合并、加入、添加、重构函数(merge、concat、join、append、stack、unstack)
一、数据连接(pd.merge) 1. left、right 2. how 3. on 4. left_on、right_on 5. sort 6. suffixes 7. left_index、right_index 二、数据合并(pd.concat) 1. index 没有重复的情况 2. index 有重复的情况 3. Data原创 2022-12-05 07:00:00 · 11489 阅读 · 300 评论 -
100天精通Python(数据分析篇)——第66天:Pandas透视表基础+实战案例(pivot_table函数)
一、透视表基础参数说明+实战案例 0. 导入Excel数据 1. data 2. index 3. values 4. columns 5. aggfunc 6. fill_value 7. dropna 8. margins 9. margins_name 10. observed 11. sort原创 2022-11-28 08:00:00 · 13089 阅读 · 360 评论 -
100天精通Python(数据分析篇)——第65天:Pandas聚合操作与案例
一、聚合 (aggregation) 1. 内置的聚合函数 2. 可自定义函数,传入agg方法中 3. 应用多个聚合函数 4. 对不同的列分别作用不同的聚合函数,使用dict 二、数据的分组运算 1. merge 2. transform 三、groupby.apply(func) 1. 产生层级索引:外层索引是分组名,内层索引是df_obj的行索引 2.原创 2022-11-21 09:01:36 · 13270 阅读 · 317 评论 -
100天精通Python(数据分析篇)——第64天:Pandas分组groupby函数案例
一、分组 (groupby) 1. GroupBy对象:DataFrameGroupBy,SeriesGroupBy 1)分组操作 2)分组运算 3)按自定义的key分组 2. GroupBy对象支持迭代操作 1)单层分组 2)多层分组 3. GroupBy对象可以转换成列表或字典 1)按列分组、按数据类型分组原创 2022-11-13 21:48:32 · 14910 阅读 · 266 评论 -
100天精通Python(数据分析篇)——第63天:Pandas使用自定义函数案例(pipe、apply、map、applymap、agg)
一、Pandas自定义函数 1. pipe() 2. apply() 3. map() 4. applymap() 5. agg() 二、总结原创 2022-11-07 07:00:00 · 20694 阅读 · 372 评论 -
100天精通Python(数据分析篇)——第62天:pandas常用统计方法大全(含案例)
一、常用统计方法与案例 1. 求和(sum) 2. 求平均值(mean) 3. 求最小值(min) 4. 求最大值(max) 5. 求中位数(median) 6. 求众数(mode) 7. 求方差(var) 8. 求标准差(std) 9. 求分布情况(describe) 10. 求相关系数(corr)原创 2022-10-31 07:00:00 · 19317 阅读 · 200 评论 -
100天精通Python(数据分析篇)——第61天:Pandas.to_datetime函数基础+代码实战(处理时间)
100天精通Python(数据分析篇)——第61天:Pandas.to_datetime函数(处理时间)一、to_datetime参数说明(代码实战) 1. arg 2. errors 3. dayfirst 4. yearfirst 5. utc 6. format 7. exact 8. unit 9. infer_datetime_format 10. origin 11. cache二、返回值原创 2022-10-25 07:00:00 · 12929 阅读 · 202 评论 -
100天精通Python(数据分析篇)——第60天:Pandas读写xml文件(read_xml、to_xml参数说明+代码实战)
100天精通Python(数据分析篇)——第60天:Pandas读写xml文件(read_xml、to_xml)一、read_xml 1. path_or_buffer 2. xpath 3. namespaces 4. elems_only 5. attrs_only 6. names 7. encoding 8. parser 9. stylesheet 10. compression 11. storage_o原创 2022-10-17 07:44:22 · 11317 阅读 · 178 评论 -
100天精通Python(数据分析篇)——第59天:Pandas读写json文件(read_json、to_json参数说明+代码实战)
100天精通Python(数据分析篇)——第59天:Pandas读写json文件(read_json、to_json)一、read_json() 1. path_or_buf 2. orient 3. typ 4. dtype 5. convert_axes 6. convert_dates 7. keep_default_dates 8. numpy 9. precise_float 10. date_unit原创 2022-10-10 07:00:00 · 9641 阅读 · 249 评论 -
100天精通Python(数据分析篇)——第58天:Pandas读写数据库(read_sql、to_sql参数说明+代码实战)
100天精通Python(数据分析篇)——第58天:Pandas读写数据库(read_sql、to_sql) 一、read_sql() 1. sql 2. con 3. index_col 4. coerce_float 5. params 6. parse_dates 7. columns 8. chunksize二、to_sql() 1. name 2. con 3. schema 4. if原创 2022-10-03 07:00:00 · 12538 阅读 · 39 评论 -
100天精通Python(数据分析篇)——第57天:Pandas读写Excel(read_excel、to_excel参数说明+代码实战)
每篇前言 二、Excel文件 1. read_excel() io sheet_name header names index_col usecols squeeze skiprows 2. to_excel() excel_writer原创 2022-09-26 07:00:00 · 9213 阅读 · 216 评论 -
100天精通Python(数据分析篇)——第56天:Pandas读写txt和csv文件(read_csv、to_csv参数说明+代码实战)
100天精通Python(数据分析篇)——第56天:Pandas读写txt和csv文件(read_csv、to_csv)一、文本文件 1. read_csv() skiprows nrows index_col names 2. to_csv() sep na_rep columns header index原创 2022-09-19 08:00:00 · 14660 阅读 · 213 评论 -
100天精通Python(数据分析篇)——第55天:Pandas之DataFrame对象基础大总结
每篇前言 一、什么是DataFrame? 二、创建DataFrame对象 1. list列表构建DataFrame 2. dict字典构建DataFrame 3. ndarray创建DataFrame 4. Series创建DataFrame 三、列索引操作 1. 读取单列 2. 读取不连续索引 3. 添加新列 4. 删除列 四、索引读取数据原创 2022-09-13 09:21:57 · 22400 阅读 · 258 评论 -
100天精通Python(数据分析篇)——第54天:Pandas之Series对象基础大总结
一、什么是Series?二、创建Series 1. list构建Series 2. ndarray创建 3. dict字典对象创建 4. 指定索引创建 5. 设置 Series名称参数创建三、索引操作 1. 行索引 2. 切片索引 3. 不连续索引 4. 布尔索引四、层级索引 1. MultiIndex索引对象 2. 选取子集 3. 交换分层顺序五、对齐运算 1. 按行、索引对齐原创 2022-09-05 08:30:32 · 18062 阅读 · 228 评论 -
100天精通Python(数据分析篇)——第53天:初始pandas模块基础
一、初始pandas 1. 什么是pandas? 2. 为什么要学习pandas? 3. pandas的优势 4. 下载安装pandas二、Pandas的数据类型 1. Series 2. DataFrame原创 2022-08-29 06:30:00 · 9548 阅读 · 239 评论 -
100天精通Python(数据分析篇)——第52天:numpy模块完结篇
100天精通Python(数据分析篇)——第52天:numpy完结 每篇前言 一、拷贝 1. 赋值 2. 视图 3. 副本 4. 注意点copy和view 二、numpy常用方法 1. 小技巧 2. 生成随机数 三、numpy中的nan和inf原创 2022-08-22 07:13:25 · 18586 阅读 · 206 评论 -
100天精通Python(数据分析篇)——第51天:numpy模块常用函数大全(字符串/数学/算术/统计/排序/搜索函数)
100天精通Python(数据分析篇)——第51天:numpy函数进阶1. 字符串函数2. 数学函数3. 算术函数4. 统计函数5. 排序函数6. 搜索函数原创 2022-08-15 07:00:00 · 24086 阅读 · 282 评论 -
100天精通Python(数据分析篇)——第50天:numpy进阶(数组操作、常用方法)
一、数组操作 1. 查看数据形状 2. 修改数组形状 3. 数组和数的计算 4. 数组和数组的计算 5. 数组中的转置 6. 数组的拼接 7. 数组的行列交换 8. 数组中的clip(裁剪) 9. 数组中数值的修改二、numpy常用方法 1. 小技巧 2. 生成随机数 3. 注意点copy和view.........原创 2022-08-08 07:00:00 · 20162 阅读 · 340 评论