a*算法的时间复杂度_算法基础——时间复杂度&空间复杂度

本文主要探讨了a*算法的时间复杂度,并对比了dijkstra和kruskal算法的时间复杂度。同时,阐述了一般情况下衡量算法时间复杂度的方法,通常关注最坏情况和平均情况的时间复杂度。文章鼓励读者关注计算机知识,分享有价值的内容。
摘要由CSDN通过智能技术生成

关注、星标公众,学点计算机知识2e733a325f8c0a02b00d6aa31d64c03a.png

561d8da1fefdab7874f751d60d760334.png

整理:persistenceBin

今天来跟大家继续分享一下数据结构的基础知识——算法效率的度量: 时间复杂度空间复杂度。 首先来跟大家分享一下在电影《复仇者联盟4》中一个片段: b6ad9f7ea860ad1b21e7a14ae5595974.png这个片段大家应该很熟悉,我们可以设计一个算法: 3f2f60e1536ec5fd54e460251ddbccf3.png 以上n为问题规模,由此我们可以得出时间开销与问题规模n的关系: T(n) = 3n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值