因为您实际上需要一个不同的数组,它是arr,其中arr < 255,而255否则,可以简单地执行以下操作:result = np.minimum(arr, 255)
一般来说,对于下限和/或上限:result = np.clip(arr, 0, 255)
如果您只想访问255以上的值,或者更复杂的值,@mtitan8的答案更一般,但是np.clip和np.minimum(或者np.maximum)对于您的情况来说更好更快:In [292]: timeit np.minimum(a, 255)
100000 loops, best of 3: 19.6 µs per loop
In [293]: %%timeit
.....: c = np.copy(a)
.....: c[a>255] = 255
.....:
10000 loops, best of 3: 86.6 µs per loop
如果您想在适当的地方(即修改arr,而不是创建result),可以使用np.minimum的out参数:np.minimum(arr, 255, out=arr)
或者np.clip(arr, 0, 255, arr)
(由于参数的顺序与函数的定义相同,out=名称是可选的。)
对于就地修改,布尔索引可以大大加快速度(无需分别创建和修改副本),但仍然不如minimum:In [328]: %%timeit
.....: a = np.random.randint(0, 300, (100,100))
.....: np.minimum(a, 255, a)
.....:
100000 loops, best of 3: 303 µs per loop
In [329]: %%timeit
.....: a = np.random.randint(0, 300, (100,100))
.....: a[a>255] = 255
.....:
100000 loops, best of 3: 356 µs per loop
为了进行比较,如果您想用最小值和最大值来限制您的值,而不使用clip,那么您必须执行两次这样的操作,如下所示np.minimum(a, 255, a)
np.maximum(a, 0, a)
或者a[a>255] = 255
a[a<0] = 0