计算机的注意技术性能指标,计算机的性能指标—刘琛.doc

本课程讲解计算机各部件的作用及性能指标,帮助学生理解计算机硬件组成部分及其性能表现。通过实物展示和通俗例子,提升学习兴趣。

计算机的性能指标—刘琛

教学设计表

学科 计算机应用 学校 安康职中 试讲者姓名 刘琛

1.2.2计算机的性能指标计划学时1学时本课讲述了计算机各部分的作用,重点说明了计算机各部件的性能指标。了解这些后,有助于学生认识计算机的硬件部分,明白计算机的性能是由哪些硬件指标决定。 当今这个信息爆炸的时代,计算机方面的知识是每个学生必须学习和掌握的,而且当代的青少年对计算机也很向往,一方面是好奇,另一方面是迫切需要增长这方面的知识。课程标准:

1. 掌握计算机的部件组成。

2.理解影响各部件运行能力的性能指标。

3. 对各个部件有形象的认识。知识与技能:

1.掌握计算机的组成。

2.掌握各部件的性能指标。

3.准确指出硬件部位。 过程与方法:

1. 硬件部分的知识相对比较枯燥,通过形象的比喻,或者转化成较为通俗易懂的例子来讲述。

2.通过对实际物品的拆解说明,使学生有形象的认识,利用学生的好奇心理,提升学生的兴趣。

情感、态度与价值观:

1.热爱生活、自信开朗,兴趣广泛、情趣高雅,乐观向上、全面发展,积极地追求美好生活。

2.树立正确的道德观念和法律意识,不妨碍他人,尊重和关心他人。1.提升学生的积极性。硬件部分的知识点比较枯燥,如何形象生动的讲述是一个需要解决的地方。

2.对各个性能指标的准确把握。计算机的性能指标随着计算机的更新换代不断发展,而课本上的东西一般要落后于现实技术,如何在讲述课本知识的基础上,再将知识延伸,将现有的较为先进的技术穿插其中,是一个需要注意的地方。

3.计算机课程虽然是一个技术性,实践性的课程,以技术课程为重点,但是如何将德育的内容巧妙的加入进来也是需要考虑的,我们需要的不是单一的技术人员,而是具有良好道德和职业素养的技术人才。 1.通过硬件展示,提升学生兴趣,将学生的注意力引入课堂。

2.分层次讲述计算机各部件的性能指标。

3.总结全文布置作业

观看硬件导入课程

举例说明

性能比较

实物讲解

掌握判断性能的能力

总结、布置作业

课本和实际硬件结合

板书

通过观看硬件提高学生兴趣

形象认识硬件

摸一摸

看一看

试一试、

分层讲述计算机的性能指标

理解性能指标的原理

内容概要:本文介绍了一个基于多传感器融合的定位系统设计方案,采用GPS、里程计和电子罗盘作为定位传感器,利用扩展卡尔曼滤波(EKF)算法对多源传感器数据进行融合处理,最终输出目标的滤波后位置信息,并提供了完整的Matlab代码实现。该方法有效提升了定位精度与稳定性,尤其适用于存在单一传感器误差或信号丢失的复杂环境,如自动驾驶、移动采用GPS、里程计和电子罗盘作为定位传感器,EKF作为多传感器的融合算法,最终输出目标的滤波位置(Matlab代码实现)机器人导航等领域。文中详细阐述了各传感器的数据建模方式、状态转移与观测方程构建,以及EKF算法的具体实现步骤,具有较强的工程实践价值。; 适合人群:具备一定Matlab编程基础,熟悉传感器原理和滤波算法的高校研究生、科研人员及从事自动驾驶、机器人导航等相关领域的工程技术人员。; 使用场景及目标:①学习和掌握多传感器融合的基本理论与实现方法;②应用于移动机器人、无人车、无人机等系统的高精度定位与导航开发;③作为EKF算法在实际工程中应用的教学案例或项目参考; 阅读建议:建议读者结合Matlab代码逐行理解算法实现过程,重点关注状态预测与观测更新模块的设计逻辑,可尝试引入真实传感器数据或仿真噪声环境以验证算法鲁棒性,并进一步拓展至UKF、PF等更高级滤波算法的研究与对比。
内容概要:文章围绕智能汽车新一代传感器的发展趋势,重点阐述了BEV(鸟瞰图视角)端到端感知融合架构如何成为智能驾驶感知系统的新范式。传统后融合与前融合方案因信息丢失或算力需求过高难以满足高阶智驾需求,而基于Transformer的BEV融合方案通过统一坐标系下的多源传感器特征融合,在保证感知精度的同时兼顾算力可行性,显著提升复杂场景下的鲁棒性与系统可靠性。此外,文章指出BEV模型落地面临大算力依赖与高数据成本的挑战,提出“数据采集-模型训练-算法迭代-数据反哺”的高效数据闭环体系,通过自动化标注与长尾数据反馈实现算法持续进化,降低对人工标注的依赖,提升数据利用效率。典型企业案例进一步验证了该路径的技术可行性与经济价值。; 适合人群:从事汽车电子、智能驾驶感知算法研发的工程师,以及关注自动驾驶技术趋势的产品经理和技术管理者;具备一定自动驾驶基础知识,希望深入了解BEV架构与数据闭环机制的专业人士。; 使用场景及目标:①理解BEV+Transformer为何成为当前感知融合的主流技术路线;②掌握数据闭环在BEV模型迭代中的关键作用及其工程实现逻辑;③为智能驾驶系统架构设计、传感器选型与算法优化提供决策参考; 阅读建议:本文侧重技术趋势分析与系统级思考,建议结合实际项目背景阅读,重点关注BEV融合逻辑与数据闭环构建方法,并可延伸研究相关企业在舱泊一体等场景的应用实践。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值