再谈回溯法
当当当,我又来了,这次又是临时工~
众所周知,我们老板最近很忙,
这也就是拉我来当临时工的原因啦。
嗯,习惯了老板文章的老观众可能会觉得我的内容比较简单,
请不要介意,我会努力学习做出更优秀的内容的。。。
还是继续邀请新手一起来学习算法,
这次讲的是老板在两年前写过的算法——
回溯法。
在此感谢老板,参考了他的文章,老板赛高,老板赛高。
那么我在这里尝试从不同的角度讲,
大家也可以点击链接看看老板过去写的文章↓↓↓↓
【算法进阶】用回溯法(backtracking algorithm)求解N皇后问题(N-Queens puzzle)
话说多了,那么就开始吧。
目录
01.回溯法介绍
02.01背包:子集树
03.旅行售货商:排序树
04.总结
壹
回溯法介绍
回溯法,又叫试探法,是一种寻找最优解的暴力搜寻法,也比较容易理解(适合小白学习)。但是,由于暴力,回溯法的时间复杂度较高,因此在比较一些数字较大的问题时,比如上次我们提到的最短路径问题等,运行时间一般比较长。
在回溯法中,深度优先搜索是一种很重要的工具——说到这是不是想起来上次的最短路径问题的DFS解法了?了解了DFS,就比较容易理解回溯法。
简单地介绍一下DFS,用一句话概括,就是“不撞南墙不回头”。(这句话也适用于回溯法)
它的基本思想是:
(1)某一种可能情况向前探索,并生成一个子节点。
(2)过程中,一旦发现原来的选择不符合要求,就回溯至父亲结点,然后重新选择另一方向,再次生成子结点,继续向前探索。
(3)如此反复进行,直至求得最优解。
我们再回到回溯法。
回溯法基本思想是:
(1)针对具体问题,定义问题的解空间;
(2)确定易于搜索的解空间结构(数据结构的选择)。
(3)一般以DFS的方式搜索解空间。
(4)在搜索过程中,可以使用剪枝函数等来优化算法。
是不是看到了几个生词?没关系,我们再解释一下。
解空间:顾名思义,就是一个问题的所有解的集合。(但别忘了,这离我们要求的最优解还差很远!)
剪枝函数:用约束函数和限界函数剪去得不到最优解的子树,统称为剪枝函数。
慢着,又多了几个生词!
别着急,我们继续看。
约束条件:有效解的要求,即题目的要求。
约束函数:减去不满足约束条件的子树的函数
限界函数:去掉得不到最优解的结点的函数
扩展结点:当前正在产生子结点的结点称为扩展结点
那么,为什么我们这里要提到树呢?
因为我们用回溯法处理的解空间常常可以分为这两种(或者说可以采取这两种方法):
子集树:当所给问题是从集合中找出满足某种性质的子集时,相应的解空间树称为子集树。
排列树:当所给问题事从集合中确定满足某种性质的排列时,相应的解空间树称为排列树。
解释了这么多名词,相信大家对回溯法都有了一点基础的了解。但很多同学可能还有一个很大的问题:
回溯法到底和DFS有什么区别?
其实我认为吧,真没什么区别。真要说的话,DFS是一种遍历搜索图、树等数据结构的一种算法,更像一种工具;而回溯法则是为了解决问题不断地生成又放弃一些解决方案(解空间在搜索问题的过程中动态产生是回溯法的一个重要特点),直至找到最优解或搜索完毕为止的一种方法,更像一种指导思想,在解空间中利用DFS进行全面的搜索。
我觉得也没必要太纠结这两者的区别。。。(不是因为我搞不懂!!!)
还有就是关于优化的剪枝函数。
剪枝就是在搜索过程中利用过滤条件来剪去完全不用考虑(已经判断这条路走下去得不到最优解)的搜索路径,从而避免了一些不必要的搜索,优化算法求解速度,当