本文根据dbaplus社群第198期线上分享整理而成,文末还有好书推荐哦~
讲师介绍
陈晓宇
宜信容器云架构师
负责宜信PaaS平台的设计和推广,帮助企业从传统应用迁移至云原生;
在云计算相关行业具有丰富的研发与架构经验,参与多个社区开源项目(Openstack、Kubernetes、Harbor等);
曾参与编写《深入浅出Prometheus》一书。
一、简介
Kubernetes自从2012年开源以来便以不可阻挡之势成为容器领域调度和编排的领头羊,Kubernetes是Google Borg系统的开源实现,于此对应Prometheus则是Google BorgMon的开源实现。Prometheus是由SoundCloud开发的开源监控报警系统和时序列数据库。从字面上理解,Prometheus由两个部分组成,一个是监控报警系统,另一个是自带的时序数据库(TSDB)。
2016年,由Google发起的Linux基金会旗下的原生云基金会(Cloud Native Computing Foundation)将Prometheus纳入其第二大开源项目。Prometheus在开源社区也十分活跃,在GitHub上拥有两万多Star,并且系统每隔一两周就会有一个小版本的更新。
二、各种监控工具对比
其实,在Prometheus之前市面已经出现了很多的监控系统,如Zabbix、Open-Falcon、Nagios等。那么Prometheus和这些监控系统有啥异同呢?我们先简单回顾一下这些监控系统。
1、Zabbix
Zabbix是由Alexei Vladishev开源的分布式监控系统,支持多种采集方式和采集客户端,同时支持SNMP、IPMI、JMX、Telnet、SSH等多种协议,它将采集到的数据存放到数据库中,然后对其进行分析整理,如果符合告警规则,则触发相应的告警。
Zabbix核心组件主要是Agent和Server,其中Agent主要负责采集数据并通过主动或者被动的方式采集数据发送到Server/Proxy,除此之外,为了扩展监控项,Agent还支持执行自定义脚本。Server主要负责接收Agent发送的监控信息,并进行汇总存储,触发告警等。
Zabbix Server将收集的监控数据存储到Zabbix Database中。Zabbix Database支持常用的关系型数据库,如果MySQL、PostgreSQL、Oracle等,默认是MySQL,并提供Zabbix Web页面(PHP编写)数据查询。
Zabbix由于使用了关系型数据存储时序数据,所以在监控大规模集群时常常在数据存储方面捉襟见肘。所以从Zabbix 4.2版本后开始支持TimescaleDB时序数据库,不过目前成熟度还不高。
2、Open-Falcon
Open-Falcon是小米开源的企业级监控工具,用Go语言开发而成,包括小米、滴滴、美团等在内的互联网公司都在使用它,是一款灵活、可扩展并且高性能的监控方案,主要组件包括了:
1)Falcon-agent是用Go语言开发的Daemon程序,运行在每台Linux服务器上,用于采集主机上的各种指标数据,主要包括CPU、内存、磁盘、文件系统、内核参数、Socket连接等,目前已经支持200多项监控指标。并且,Agent支持用户自定义的监控脚本。
2)Hearthbeat server简称HBS心跳服务,每个Agent都会周期性地通过RPC方式将自己的状态上报给HBS,主要包括主机名、主机IP、Agent版本和插件版本,Agent还会从HBS获取自己需要执行的采集任务和自定义插件。
3)Transfer负责接收Agent发送的监控数据,并对数据进行整理,在过滤后通过一致性Hash算法发送到Judge或者Graph。
4)Graph是基于RRD的数据上报、归档、存储组件。Graph在收到数据以后,会以rrdtool的数据归档方式来存储,同时提供RPC方式的监控查询接口。
5)Judge告警模块,Transfer转发到Judge的数据会触发用户设定的告警规则,如果满足,则会触发邮件、微信或者回调接口。这里为了避免重复告警引入了Redis暂存告警,从而完成告警的合并和抑制。
6)Dashboard是面向用户的监控数据查询和告警配置界面。
3、Nagios
Nagios原名为NetSaint,由Ethan Galstad开发并维护。Nagios是一个老牌监控工具,由C语言编写而成,主要针对主机监控(CPU、内存、磁盘等)和网络监控(SMTP、POP3、HTTP和NNTP等),当然也支持用户自定义的监控脚本。
它还支持一种更加通用和安全的采集方式NREP(Nagios Remote Plugin Executor),它首先在远端启动一个NREP守护进程,用于在远端主机上面运行检测命令,在Nagios服务端用check nrep的plugin插件通过SSL对接到NREP守护进程执行相应的监控行为。相比SSH远程执行命令的方式,这种方式更加安全。
4、Prometheus
Prometheus是由SoundCloud开发的开源监控报警系统和时序列数据库。Prometheus的基本原理是通过HTTP周期性抓取被监控组件的状态,任意组件只要提供对应的HTTP接口并且符合Prometheus定义的数据格式,就可以接入Prometheus监控。
Prometheus Server负责定时在目标上抓取metrics(指标)数据并保存到本地存储里面。Prometheus采用了一种Pull(拉)的方式获取数据,不仅降低客户端的复杂度,客户端只需要采集数据,无需了解服务端情况,而且服务端可以更加方便的水平扩展。
如果监控数据达到告警阈值Prometheus Server会通过HTTP将告警发送到告警模块alertmanger,通过告警的抑制后触发邮件或者webhook。Prometheus支持PromQL提供多维度数据模型和灵活的查询,通过监控指标关联多个tag的方式,将监控数据进行任意维度的组合以及聚合。
5、综合对比
1)综合对比如上面的表格,从开发语言上看,为了应对高并发和快速迭代的需求,监控系统的开发语言已经慢慢从C语言转移到Go。不得不说,Go凭借简洁的语法和优雅的并发,在Java占据业务开发,C占领底层开发的情况下,准确定位中间件开发需求,在当前开源中间件产品中被广泛应用。
2)从系统成熟度上看,Zabbix和Nagios都是老牌的监控系统:Nagios是在1999年出现的,Zabbix是在1998年出现的,系统功能比较稳定,成熟度较高。而Prometheus和Open-Falcon都是最近几年才诞生的,虽然功能还在不断迭代更新,但站在巨人的肩膀之上,在架构设计上借鉴了很多老牌监控系统的经验;
3)从系统扩展性方面看,Zabbix和Open-Falcon都可以自定义各种监控脚本,并且Zabbix不仅可以做到主动推送,还可以做到被动拉取,Prometheus则定义了一套监控数据规范,并通过各种exporter扩展系统采集能力。
4)从数据存储方面来看,Zabbix采用关系数据库保存,这极大限制了Zabbix采集的性能,Nagios和Open-Falcon都采用RDD数据存储,Open-Falcon还加入了一致性hash算法分片数据,并且可以对接到OpenTSDB,而Prometheus自研一套高性能的时序数据库,在V3版本可以达到每秒千万级别的数据存储,通过对接第三方时序数据库扩展历史数据的存储;
5)从配置复杂度上看,Prometheus只有一个核心server组件,一条命令便可以启动,相比而言,其他系统配置相对麻烦,尤其是Open-Falcon。
6)从社区活跃度上看,目前Zabbix和Nagios的社区活跃度比较低,尤其是Nagios,Open-Falcon虽然也比较活跃,但基本都是国内的公司参与,Prometheus在这方面占据绝对优势,社区活跃度最高,并且受到CNCF的支持,后期的发展值得期待;
7)从容器支持角度看,由于Zabbix和Nagios出现得比较早,当时容器还没有诞生,自然对容器的支持也比较差。Open-Falcon虽然提供了容器的监控,但支持力度有限。Prometheus的动态发现机制,不仅可以支持swarm原生集群,还支持Kubernetes容器集群的监控,是目前容器监控最好解决方案。Zabbix在传统监控系统中,尤其是在服务器相关监控方面,占据绝对优势。而Nagios则在网络监控方面有广泛应用,伴随着容器的发展,Prometheus开始成为主导及容器监控方面的标配,并且在未来可见的时间内被广泛应用。
总体来说,对比各种监控系统的优劣,Prometheus可以说是目前监控领域最锋利的“瑞士军刀”了。
三、Prometheus功能介绍
下图是Prometheus整体架构图。左侧是各种数据源主要是各种符合Prometheus数据格式的exporter,除此之外为了支持推送数据的Agent,可以通过Pushgateway组件,将Push转化为Pull。Prometheus甚至可以从其它的Prometheus获取数据,后面介绍联邦的时候详细介绍。
图片的上侧是服务发现,Prometheus支持监控对象的自动发现机制,从而可以动态获取监控对象,虽然Zabbix和Open-Falcon也支持动态发现机制,但Prometheus支持最完善。
图片中间是核心,通过Retrieval模块定时拉取数据,通过Storage模块保存数据。PromQL是Prometheus提供的查询语法,PromQL通过解析语法树,查询Storage模块获取监控数据。图片右侧是告警和页面展现,页面查看除了Prometheus自带的webui,还可以通过grafana等组件查询Prometheus监控数据。
Prometheus指标格式分为两个部分:一是指标名称,另一个是指标标签。格式如下:
{=, ...}
标签可体现指标的维度特征,例如,对于指标http_request_total,可以有{status="200