我仍然建议使用mlabwrap作为解决方案.
我在常规(每周?)的基础上,在Linux和Windows上,跨几个不同版本的Python以及几个不同版本的Matlab使用mlabwrap.回答您的具体问题:
> mlabwrap可以跨平台,Python和Matlab版本可靠地执行.但它确实有局限性,当超越这些限制时它会可靠地失败.通常,这些可以解决.
>有关通过mlabwrap调用Matlab函数与Matlab脚本的更多信息,请参阅我的答案here.这个答案还描述了如何解决mlabwrap的一个主要限制,即并非所有Matlab对象都可以直接转换为Python对象.
>我对使用win32com调用Matlab一无所知.
我已经使用了mlabwrap,我称之为’Python-primary’风格,其中大部分是Python编程,使用Matlab作为特定数学函数的库,这些函数在scipy / numpy中不可用,并且在’Matlab中-primary’风格,大部分编程都在Matlab中,最终结果被导入到Python中,用于某些外部进程.
对于Python-primary,要记住的是并非所有Matlab函数都会返回Python可读数据. mlabwrap将从这些函数返回一个MLabObjectProxy对象.当您使用Matlab函数创建传递到其他Matlab函数以实际处理数据的对象时,通常会发生这些情况.例如,您可以使用数字信号处理工具箱创建Welch光谱对象,然后可以使用该对象获取数据的功率谱.从理论上讲,您可以将这些MLabObjectProxies传递给需要它们的Matlab函数.根据我的经验,你来回传递的越多,你就越有可能在mlabwrap中找到一个bug.你可以做的是编写一个简单的Matlab包装器函数获取对象,处理数据,然后将适当的输出作为数组返回.
您还可以使用mlabwrap中的低级命令来解决MLabObjectProxies的问题.例如,如果我有一个带有字段matlab_struct.label的结构数组的matlab_struct,并且我只想要Python端的标签,我可以执行以下操作:
# place matlab_struct into the Matlab workspace
mlab._set('matlab_struct', matlab_struct)
# convert the labels into a cell array
matlab_struct_labels = mlab.eval('{matlab_struct.labels}')
可用的主要低级命令是mlab._set(‘variable_name’,变量),mlab.eval(‘命令字符串’)和mlab.get(‘variable_name’).
如果我在Matlab中进行了大量的重载处理,比如在其他地方没有的工具箱或插件中,我会编写我称之为“Matlab-primary”的代码,我会尽量避免将数据传回去通过mlabwrap,而不是通过调用.m脚本在Matlab工作区中操作变量,将结果输出保存到数据文件,然后将其导入到我的Python代码中.
祝好运!