python是单线程还是多线程_python-多线程Web服务器与单线程

我们有一个简单的内部供内部使用的Web服务器,它只有一个职责:侦听请求,读取请求并将数据推送到数据库中.数据库和Web服务器都位于同一台计算机上. db是mysql-db,服务器是运行单线程的python Web服务器(BaseHTTPServer.HTTPServer).

问题是不能同时处理两个请求.问题是,这将有助于使Web服务器成为多线程(使用django,cheryypy等)吗?直观地讲,Web服务器仅执行占用CPU的任务,因此将其更改为多线程无济于事.这个对吗?

解决方法:

当您想一次处理多个请求时,拥有多个线程或进程确实可以帮助您(实际上,这实际上是必需的).

这并不意味着将更快地处理两个请求.拥有一个进程或线程池对于提高Web服务器的性能非常有帮助,但是在这种情况下(除非您有多个内核)这并不是很明显.但是MySQL可以同时处理两个请求没有问题,因此,如果您的Web服务器也可以做到这一点,那么您就摆脱了仅处理一个请求的问题.

但是,如果值得尝试使用这样的服务器,那么您只能回答. :)在任何情况下,Django肯定都是矫kill过正,请看一些小型WSGI服务器.

标签:multithreading,webserver,python,database

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Python是一种灵活的编程语言,其提供了多种多样的库和框架,以方便用户处理数据和进行网络爬取。在网络爬取方面,Python具有优秀的单线程多线程爬取能力。 Python单线程爬取实例: 当我们需要爬取一个简单的网站时,单线程爬取可能是最简单和最有效的方法。例如,我们可以编写一个程序来爬取一个网站的所有页面,并将它们保存到本地文件夹中。这个程序可能像这样: ```Python import requests from bs4 import BeautifulSoup def getUrls(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') urls = [] for link in soup.find_all('a'): urls.append(link.get('href')) return urls def download(urls): for url in urls: response = requests.get(url) filename = url.split('/')[-1] with open(filename, 'wb') as f: f.write(response.content) if __name__ == '__main__': urls = getUrls('http://example.com') download(urls) ``` 在这个例子中,我们使用requests和BeautifulSoup库来获取和解析HTML页面,然后使用循环和文件I/O来保存页面内容。 Python多线程爬取实例: 当我们需要爬取大量页面时,单线程爬取可能会非常缓慢,因此我们可以使用多线程爬取来提高效率。例如,我们可以使用Python多线程库threading来实现多线程爬取。下面是代码示例: ```Python import requests from bs4 import BeautifulSoup import threading def getUrls(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') urls = [] for link in soup.find_all('a'): urls.append(link.get('href')) return urls def download(url): response = requests.get(url) filename = url.split('/')[-1] with open(filename, 'wb') as f: f.write(response.content) class CrawlerThread(threading.Thread): def __init__(self, url): threading.Thread.__init__(self) self.url = url def run(self): download(self.url) if __name__ == '__main__': urls = getUrls('http://example.com') threads = [] for url in urls: t = CrawlerThread(url) threads.append(t) t.start() for t in threads: t.join() ``` 在这个例子中,我们使用多线程CrawlerThread类来下载每个页面。我们创建一个CrawlerThread列表,然后将列表中的每个元素作为参数传递给download函数,以便每个线程都可以执行下载任务。最后,我们使用join方法等待所有线程完成。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值