isafari 一键复制_FilePane 1.10.6 for Mac 文件快速复制粘贴移动工具

FilePane for Mac 是一款轻量级,多功能的文件快速复制粘贴工具,功能上同之前分享过的 PopClip 类似,可用于快速管理文件。它适用于系统中任何应用程序的几乎任何可选择和可拖动内容,并根据您提供的数据建议各种快速操作。您可以轻松复制/移动/创建文件和文件夹,编辑/共享/转换图像等等。

FilePane for Mac 文件快速复制粘贴移动工具

当你拖起文件时,会自动在屏幕上出现一个「Drop here」窗口,将文件拖到这里就会弹出很多种文件处理功,FilePane 会自动检测文件类型并为其提供一些快速操作。

软件特征:

- 即时裁剪,旋转,调整大小,转换,压缩图像;

- 免费手绘图像和截图;

- 分享内容(电子邮件,Twitter,Facebook,Airdrop);

- 设置,存储桌面图片;

- 快速复制/移动文件到您的自定义热门目的地;

- 将文件大小或路径复制到剪贴板;

- 查看单词和字形计数以及突出显示文本的各种其他方便选项;

- 将文本文档和图像转换为PDF;

- 将PDF转换为图像(PNG,JPEG,TIFF和BMP);

- 在您需要的地方创建新的文件夹,RTF,TXT,Excel和Word文件

每一个动作只需两次点击即可!

因此,FilePane可以通过拖放添加文件编辑,共享和管理选项来帮助您提高工作流程效率。

FilePane仅限于Finder,乍一看似乎没有。它也适用于其他应用程序!

例如,在Safari,Chrome或其他设备中,您可以轻松地动态保存,编辑,共享,通过电子邮件发送任何图像。或快速排序/保存/共享/编辑/整理您的电子邮件附件。

版本1.10.6更新内容:

应众多要求,旧的图像裁剪视图又回来了! 还为使用HighSierra及更高版本的用户添加了标记。

系统要求:OS X 10.10 or later 64-bit

软件首页:https://itunes.apple.com/cn/app/filepane-file-management-utility/id847515307

普通下载:

百度网盘密码:r2fc

高速下载:

资源下载此资源仅限VIP下载,请先登录

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值