python气象包_Python-Cartopy包: 地图投影

本文详细介绍了Python的Cartopy库中支持的各种地图投影,包括圆柱投影、圆锥投影和方位投影等,并通过示例代码展示了不同投影的使用方法,帮助用户在地图制图时选择合适的投影方式。
摘要由CSDN通过智能技术生成

经典地图制图中使用的投影面有圆柱面、圆锥面或平面等。根据所用投影面,地图投影相对应地可分为圆柱投影、圆锥投影和方位投影。后来又发展出了很多现代地图投影,如伪圆柱、多圆锥等投影办法。在制图时选择合适的地图投影是一件重要的工作。

本文将对 Cartopy 中支持的地图投影进行逐一进行简要介绍,这些投影都是 cartopy.crs 中的类。若要绘制某一类投影的地图,只需将其实例化之后传入 plt.axes() 方法的 projection 参数即可。本文不涉及投影的原理,旨在展示每种地图投影的效果和用法,以便在选择时参考。

圆柱投影

PlateCarree

PlateCarree(可利)投影将地物投影到圆柱面上再展开,常用来绘制世界地图。该类的定义为:

1

class cartopy.crs.PlateCarree(central_longitude=0.0, globe=None)

参数说明:

central_longitude:中央经线,默认为 0;

globe:椭球定义,默认为 WGS84。

示例:

LambertCylindrical

Lambert cylindrical projection(兰伯特等积投影)也是绘制世界地图的一种常用方案。该类的定义为:

1

class cartopy.crs.LambertCylindrical(central_longitude=0.0)

参数说明:

central_longitude:中央经线,默认为 0。

示例:

Mercator

Mercator(墨卡托)投影,属于正轴等角割圆柱投影。经纬线为相互垂直的平行直线,图上无角度变形,但面积变形较大。该投影常用于制作航海图或赤道附近区域的地图。其类定义为:

1

2

class cartopy.crs.Mercator(central_longitude=0.0, min_latitude=-80.0, max_latitude=84.0,

latitude_true_scale=0.0, globe=None)

参数说明:

central_longitude:中央经线,默认为 0;

min_latitude:显示的最小纬线(最南端),默认为 -80;

max_latitude:显示的最大纬线(最北端),默认为 84;

latitude_true_scale:长度不变形的纬线,默认为 0;

globe:椭球定义,默认为 WGS84。

示例:

Miller

Miller(米勒)投影。其类定位为:

1

class cartopy.crs.Miller(central_longitude=0.0)

参数说明:

central_longitude:中央经线,默认为 0。

示例:

TransverseMercator

TransverseMercator(横轴墨卡托)投影是对标准墨卡托投影的一种变换。其类定义为:

1

2

3

class cartopy.crs.TransverseMercator(central_longitude=0.0, central_latitude=0.0,

false_easting=0.0, false_northing=0.0,

scale_factor=1.0, globe=None)

参数说明:

central_longitude:中央经线,默认为 0;

central_latitude:中央纬线,默认为 0;

false_easting:平面上 X 轴坐标(东方向)的偏移量,以米为单位;

false_northing:平面上 Y 轴坐标(北方向)的偏移量,以米为单位;

scale_factor:中央经线处的长度变形因子,默认为 1;

globe:椭球定义,默认为 WGS84。

示例:

UTM

UTM(通用横轴墨卡托投影),制图中最常用的一种投影方法之一。在 UTM 中,地球上的主要陆地被划分为一个个的网格区间。对于纬度,从南纬 80° 开始,每 8° 被划分为一个区间

要将nc格式的降水数据和经纬度做极射赤面投影,可以使用Python中的netCDF4和Basemap库。 首先,需要读取nc格式的降水数据和经纬度数据,可以使用netCDF4库中的Dataset类进行读取。例如,以下代码读取名为“precipitation.nc”的文件中的降水数据和经纬度数据: ```python from netCDF4 import Dataset nc_file = Dataset("precipitation.nc", "r") precipitation = nc_file.variables["precipitation"][:] lon = nc_file.variables["lon"][:] lat = nc_file.variables["lat"][:] ``` 接下来,需要使用Basemap库中的Basemap类创建一个极射赤面投影地图。例如,以下代码创建一个以北极为中心、兰伯特正形投影的极区地图: ```python from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt m = Basemap(projection="npstere", boundinglat=0, lon_0=0, resolution="l") m.drawcoastlines() m.drawparallels(np.arange(-90., 120., 30.), labels=[1, 0, 0, 0]) m.drawmeridians(np.arange(0., 420., 60.), labels=[0, 0, 0, 1]) plt.show() ``` 最后,需要将降水数据映射到地图上。可以使用Basemap库中的pcolormesh函数将数据绘制为颜色填充的矩形。例如,以下代码将读取的降水数据绘制在上一步创建的极区地图上: ```python import numpy as np x, y = m(lon, lat) m.pcolormesh(x, y, precipitation, cmap="jet") plt.colorbar(orientation="horizontal") plt.show() ``` 综上所述,以下是将nc格式的降水数据和经纬度做极射赤面投影的完整代码: ```python from netCDF4 import Dataset from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt import numpy as np # 读取nc格式的降水数据和经纬度数据 nc_file = Dataset("precipitation.nc", "r") precipitation = nc_file.variables["precipitation"][:] lon = nc_file.variables["lon"][:] lat = nc_file.variables["lat"][:] # 创建极区地图 m = Basemap(projection="npstere", boundinglat=0, lon_0=0, resolution="l") m.drawcoastlines() m.drawparallels(np.arange(-90., 120., 30.), labels=[1, 0, 0, 0]) m.drawmeridians(np.arange(0., 420., 60.), labels=[0, 0, 0, 1]) # 绘制降水数据 x, y = m(lon, lat) m.pcolormesh(x, y, precipitation, cmap="jet") plt.colorbar(orientation="horizontal") plt.show() ``` 注意:以上代码仅用于演示如何将nc格式的降水数据和经纬度做极射赤面投影,具体使用时需要根据自己的数据和需求进行调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值