点击上方蓝字关注加小星星✨
涛哥给你我所有~
今天是 Kevin 的算法之路的第 62 天。为大家讲解 LeetCode 第 347 题,是一道中等难度且很经典的题目。
每日一笑
我洗了个头,掉了不少头发,但我不伤心,因为我还有个头,而我的头却啥也没有。
题目描述
给定一个非空的整数数组,返回其中出现频率前 k 高的元素。
示例 1:
输入: nums = [1,1,1,2,2,3], k = 2 输出: [1,2] 示例 2:
输入: nums = [1], k = 1 输出: [1]
提示:
你可以假设给定的 k 总是合理的,且 1 ≤ k ≤ 数组中不相同的元素的个数。你的算法的时间复杂度必须优于 O(n log n) , n 是数组的大小。题目数据保证答案唯一,换句话说,数组中前 k 个高频元素的集合是唯一的。你可以按任意顺序返回答案。
来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/top-k-frequent-elements 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解题思路
哈希表-优先队列
这道常考题的经典做法,必须掌握!
- 先用 哈希表 来建立数字和其出现次数的映射,遍历一遍数组统计元素的频率
- 维护一个元素数目为
K
的优先队列
这里要前K个高频元素,也就是按从大到小排序,所以使用最小堆。(同理,若要从小到大排序,则使用最大堆)
每次都将新的元素与堆顶元素(堆中频率最小的元素)进行比较;
如果新的元素的频率比堆顶端的元素大,则弹出堆顶端的元素,将新的元素添加进堆中;
所以最终,堆中的 k 个元素即为前 k 个高频元素。
代码实现
//go
// go中没有自带的优先队列,需要自己实现小根堆
func topKFrequent(nums []int, k int) []int {
if k == 0 || len(nums) == 0 {
return make([]int, 0)
}
// 1. 初始化map
m := make(map[int]int)
for _, v := range nums {
m[v] = m[v] + 1
}
// 2. 放到小根堆里面
h := &NodeHeap{}
topK := min(k, len(m))
size := 0
for k, v := range m {
if size heap.Push(h, &Node{
val: k,
times: v,
})
size++
} else {
if v > (*h)[0].times {
heap.Pop(h)
heap.Push(h, &Node{
val: k,
times: v,
})
}
}
}
// 3.收集答案
res := make([]int, 0, topK)
for i := 0; i res = append(res, heap.Pop(h).(*Node).val)
}
return res
}
type Node struct {
val int
times int
}
type NodeHeap []*Node
func (h NodeHeap) Len() int { return len(h) }
// 小根堆
func (h NodeHeap) Less(i, j int) bool { return h[i].times
func (h NodeHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *NodeHeap) Push(x interface{}) {
*h = append(*h, x.(*Node))
}
func (h *NodeHeap) Pop() interface{} {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}
func min(a, b int) int {
if a return a
}
return b
}
//go
// 偷懒不想手写堆的话,可以用下面这种简便的解法
func topKFrequent(nums []int, k int) []int {
// map记录num和出现频率
m := make(map[int]int)
// slice记录出现过的num
s := make([]int,0)
for _, num := range nums {
if _, ok := m[num]; ok {
m[num] += 1
}else {
m[num] = 1
s = append(s, num)
}
}
// 降序排序
sort.Slice(s, func(i, j int) bool {
return m[s[i]] > m[s[j]]
})
return s[:k]
}
//java
//java有自带的优先队列,可以直接使用
class Solution {
public int[] topKFrequent(int[] nums, int k) {
ArrayList res = new ArrayList<>();
HashMap map = new HashMap<>();for (int num : nums) {if (!map.containsKey(num)) {
map.put(num, 1);
} else {
map.put(num, map.get(num) + 1);
}
}// 最小堆
PriorityQueue pq = new PriorityQueue<>(new Comparator() {@Overridepublic int compare(Integer o1, Integer o2) {return map.get(o1) - map.get(o2);
}
});for (Integer key : map.keySet()) {if (pq.size() pq.add(key);
} else if (map.get(key) > map.get(pq.peek())) {
pq.remove();
pq.add(key);
}
}while (!pq.isEmpty()) {
res.add(pq.remove());
}// List 转 Arrayreturn res.stream().mapToInt(Integer::valueOf).toArray();
}
}
郑重声明:
所展示代码已通过 LeetCode 运行通过,请放心食用~
在唠唠嗑
很多人都想养成好习惯,但大多数人却是三分钟热度。为了我们能一起坚持下去,决定制定如下计划(福利)
一起学算法,打卡领红包!
参与方式:
关注我的微信公众号「Kevin的学堂」
还可「加群」与众多小伙伴
一起坚持,一起学习,一起更优秀!
打卡规则为:
「留言」“打卡XXX天” ➕「分享」到朋友圈
奖励:
打卡
21
天,联系本人获取6.6
元红包一个!打卡
52
天,联系本人获取16.6
元红包一个!打卡
100
天,联系本人获取66.6
元红包一个!