python sklearn 梯度下降法_Python- sklearn之梯度下降算法原理

给定一个矩阵A∈Rm×n,以及一个向量x∈Rn,他们乘积为一个向量y = Ax∈Rm。也即如下的表示:

如果A为行表示的矩阵(即表示为

5312fc0235a6422e80895f8c7fa60f45.jpg),则y的表示为:

6367ba83fbce493fb94a36d2bb91916f.jpg

相对的,如果A为列表示的矩阵,则y的表示为:

d56e6efb678f49ff80403f4481d49b95.jpg

即:y看成A的列的线性组合,每一列都乘以一个系数并相加,系数由x得到。

同理,

yT=xT*A表示为:

1ac301a5321f4f669d0bcc4d5c83904c.jpg

yT是A的行的线性组合,每一行都乘以一个系数并相加,系数由x得到。

同样有两种表示方式:

第一种:A表示为行,B表示为列

545f5d1b9e5446d5a2901d2dba638c8c.jpg

第二种,A表示为列,B表示为行:

b6e601a5d4c14e35b69802e622fdba1e.jpg

本质上是一样的,只是表示方式不同罢了。

定义函数f,是从m x n矩阵到实数的一个映射,那么对于f在A上的梯度的定义如下:

f2ee6ebb00c84c3094dcd5a8ac58c25c.jpg

这里我的理解是,f(A)=关于A中的元素的表达式,是一个实数,然后所谓的对于A的梯度即是和A同样规模的矩阵,矩阵中的每一个元素就是f(A)针对原来的元素的求导。

因为篇幅原因,所以不在这里继续赘述,其他需要的概念还有单位矩阵、对角线矩阵、矩阵转置、对称矩阵(AT=A)、反对称矩阵(A=-AT)、矩阵的迹、向量的模、线性无关、矩阵的秩、满秩矩阵、矩阵的逆(当且仅当矩阵满秩时可逆)、正交矩阵、矩阵的列空间(值域)、行列式、特征向量与特征值……

在课程中用到了许多公式,罗列一下。嗯,部分公式的证明很简单,部分难的证明我也不会,也懒得去细想了,毕竟感觉上数学对于我来说更像是工具吧。

转置相关:

•(AT)T = A•(AB)T = BT AT•(A + B)T = AT + BT

迹相关:

•For A∈Rn×n, trA = trAT .•For A, B∈Rn×n, tr(A + B) =trA + trB.•For A∈Rn×n, t∈R, tr(tA) = t trA.•For A, B such that AB issquare, trAB = trBA.•For A, B, C such that ABC issquare, trABC = trBCA = trCAB。 当乘法变多时也一样,就是每次从末尾取一个矩阵放到前面去,这样的矩阵乘法所得矩阵的迹是一致的。

秩相关

•For A∈Rm×n,rank(A)≤min(m, n). If rank(A) = min(m, n),则A称为满秩•For A∈Rm×n,rank(A) = rank(AT).•For A∈Rm×n, B∈Rn×p,rank(AB)≤min(rank(A), rank(B)).•For A, B∈Rm×n,rank(A + B)≤rank(A) +rank(B).

逆相关:

•(A−1)−1 = A•If Ax = b,左右都乘以A−1得到x = A−1b.•(AB)−1 = B−1A−1•(A−1)T = (AT)−1. F通常表示为A−T.

行列式相关:

•For A∈Rn×n, |A| = |AT |.•For A, B∈Rn×n, |AB| = |A||B|.•For A∈Rn×n, |A| = 0,表示矩阵A是奇异矩阵,不可逆矩阵•For A∈Rn×n and A可逆, |A|−1 = 1/|A|.

梯度相关:

• ∇x(f(x) + g(x)) =∇xf(x) +∇xg(x).•For t∈R,∇x(t f(x)) = t∇xf(x).

• ∇xbT x = b• ∇xxT Ax = 2Ax (if A对称)• ∇2xxT Ax = 2A (if A对称)

• ∇A|A| =(adj(A))T = |A|A−T . adj=adjoint

例子用的是上节课的房价的例子,有一组数据,有房子面积和房子价格,输入格式举例:

627bfb3e02034ec3a0cf036d1e942990.jpg

老师定义的变量如下:

m:训练样本的数目

x:输入的变量(输入的特征,在这个例子中为房子面积,后来又加了一个房子的卧室数目)

y :输出变量(目标变量,这个例子中就是房价)

(x,y):表示的是一个样本

6afe0d04d34840148a7a0046ef913fbb.jpg:表示的第i个样本,表示为

071cb27cefd04df38dd2f5da7f753b2d.jpg

所谓的监督学习即为告诉算法每个样本的正确答案,学习后的算法对新的输入也能输入正确的答案。监督指的是在训练样本答案的监督下,h即为监督学习函数。

284684c92c35452491bea923a4b1480f.jpg

此例中我们假设输出目标变量是输入变量的线性组合,也就是说,我们的假设是存下如下的h(x):

c2853a77539f4a138c8fce7d5b46c0ec.jpg

Theta表示是特征前面的参数(也称作特征权重)。也就是经过h(x)之后得到的就是预测的结果了。

如果假设x0=1,那么原来的h(x)就可以简单的表示为如下形式:

37b6400f46a24f9eac86f7ac27437146.jpg

,其中n为特征数目,我们为了表达简便,把theta和x都写成向量的形式。下面就是如何求出θ(向量)使得h(x)尽可能接近实际结果的,至少在训练集内接近训练集中的正确答案。

我们定义一个花费函数(costfunction),针对每一组θ,计算出h(x)与实际值的差值。定义如下:

a9ee613f75b948c687665efd21d573bc.jpg这也是用的最小二乘法的思想,但是之所以乘以1/2是为了简化后面的计算。针对训练集中的每一组数据。剩下的问题就是求得minJ(θ)时的θ取值,因为J(θ)是随着θ变化而变化,所以我们要求得minJ(θ)时的θ就是我们想要的θ(这个min也叫做最小花费函数),怎么样求出这组theta呢?采用的方法就是梯度下降算法和正规方程组。我们首先来看梯度下降算法。

梯度下降算法是一种搜索算法,基本思想可以这样理解:我们从山上的某一点出发,找一个最陡的坡走一步(也就是找梯度方向),到达一个点之后,再找最陡的坡,再走一步,直到我们不断的这么走,走到最“低”点(最小花费函数收敛点)。

c0ed67bd65914deebfc89e86e1c2ab82.jpg

如上图所示,x,y表示的是theta0和theta1,z方向表示的是花费函数,很明显出发点不同,最后到达的收敛点可能不一样。当然如果是碗状的,那么收敛点就应该是一样的。

算法的theta更新表示如下:

397b164162264a4580c8bff5667ee1fb.jpg

对每一个theta(j),都先求J(θ)对theta(j)的偏导(梯度方向),然后减少α,然后将现在的theta(j)带入,求得新的theta(j)进行更新。其中α为步长,你可以理解为我们下山时走的步子的大小。步子太小了,收敛速度慢,步子太大了,可能会在收敛点附近来回摆动导致无法到达最低点。P.S.这个符号根据老师所说理解为程序中的赋值符号(=号),如果是=号,则理解为值是相等的(编程里面的==号)。

下面我们先理解下,假设现在训练集只有一组数据求关于theta(j)的偏导:

f00c67325a95401390c3dde90ccb2b1c.jpg

带入

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值