matlab bestmse,MATLAB中用BP网络算法,performance,training state,regression的图像怎样才算好...

我自己写的东西,但是目标和输出差距也太大了点,真心搞不懂啊,就是个凝汽器故障诊断,老师说老简单了,是我太笨了吧,我新手,求关注啊!求帮助,谢谢

p=[1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0;1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0;1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0;1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0;0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0;0 1 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0;0 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0;0 1 0 0 0 1 0 1 0 0 1 0 0 1 1 0 0;0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0;0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0;0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1]

p =

1     0     1     1     0     0     0     0     0     0     0     0     0     0     0     1     0

1     0     0     0     1     0     0     0     0     0     0     0     0     1     1     0     0

1     0     0     0     0     1     0     0     0     0     0     0     1     1     1     1     0

1     0     0     0     0     0     0     0     0     0     0     0     1     1     1     0     0

0     1     0     0     0     0     0     0     0     0     0     0     0     1     1     0     0

0     1     0     0     0     0     1     0     1     0     0     0     0     1     1     0     0

0     1     0     0     0     1     0     1     0     1     0     0     0     1     1     0     0

0     1     0     0     0     1     0     1     0     0     1     0     0     1     1     0     0

0     1     0     0     0     0     0     0     0     0     0     0     1     1     0     1     0

0     1     0     0     0     0     0     0     0     0     0     1     0     1     0     1     0

0     1     0     0     0     0     0     0     0     0     0     0     0     1     1     0     1

>> t=[1 0 0 0 0 0 0 0 0 0 0;0 1 0 0 0 0 0 0 0 0 0;0 0 1 0 0 0 0 0 0 0 0;0 0 0 1 0 0 0 0 0 0 0;0 0 0 0 1 0 0 0 0 0 0;0 0 0 0 0 1 0 0 0 0 0;0 0 0 0 0 0 1 0 0 0 0;0 0 0 0 0 0 0 1 0 0 0;0 0 0 0 0 0 0 0 1 0 0;0 0 0 0 0 0 0 0 0 1 0;0 0 0 0 0 0 0 0 0 0 1]

t =

1     0     0     0     0     0     0     0     0     0     0

0     1     0     0     0     0     0     0     0     0     0

0     0     1     0     0     0     0     0     0     0     0

0     0     0     1     0     0     0     0     0     0     0

0     0     0     0     1     0     0     0     0     0     0

0     0     0     0     0     1     0     0     0     0     0

0     0     0     0     0     0     1     0     0     0     0

0     0     0     0     0     0     0     1     0     0     0

0     0     0     0     0     0     0     0     1     0     0

0     0     0     0     0     0     0     0     0     1     0

0     0     0     0     0     0     0     0     0     0     1

>> p=p';

>> t=t';

>> net=newff(p,t,{10},{'tansig','tansig'},'trainlm');

>> net.trainParam.goal=0.003;

>> net.trainParam.epochs=5000;

>> [net,tr]=train(net,p,t)

net =

Neural Network

name: 'Custom Neural Network'

efficiency: .cacheDelayedInputs, .flattenTime,

.memoryReduction, .flattenedTime

userdata: (your custom info)

dimensions:

numInputs: 1

numLayers: 2

numOutputs: 1

numInputDelays: 0

numLayerDelays: 0

numFeedbackDelays: 0

numWeightElements: 301

sampleTime: 1

connections:

biasConnect: [1; 1]

inputConnect: [1; 0]

layerConnect: [0 0; 1 0]

outputConnect: [0 1]

subobjects:

inputs: {1x1 cell array of 1 input}

layers: {2x1 cell array of 2 layers}

outputs: {1x2 cell array of 1 output}

biases: {2x1 cell array of 2 biases}

inputWeights: {2x1 cell array of 1 weight}

layerWeights: {2x2 cell array of 1 weight}

functions:

adaptFcn: 'adaptwb'

adaptParam: (none)

derivFcn: 'defaultderiv'

divideFcn: 'dividerand'

divideParam: .trainRatio, .valRatio, .testRatio

divideMode: 'sample'

initFcn: 'initlay'

performFcn: 'mse'

performParam: .regularization, .normalization

plotFcns: {'plotperform', plottrainstate,

plotregression}

plotParams: {1x3 cell array of 3 params}

trainFcn: 'trainlm'

trainParam: .showWindow, .showCommandLine, .show, .epochs,

.time, .goal, .min_grad, .max_fail, .mu, .mu_dec,

.mu_inc, .mu_max

weight and bias values:

IW: {2x1 cell} containing 1 input weight matrix

LW: {2x2 cell} containing 1 layer weight matrix

b: {2x1 cell} containing 2 bias vectors

methods:

adapt: Learn while in continuous use

configure: Configure inputs & outputs

gensim: Generate Simulink model

init: Initialize weights & biases

perform: Calculate performance

sim: Evaluate network outputs given inputs

train: Train network with examples

view: View diagram

unconfigure: Unconfigure inputs & outputs

evaluate:       outputs = net(inputs)

tr =

trainFcn: 'trainlm'

trainParam: [1x1 struct]

performFcn: 'mse'

performParam: [1x1 struct]

derivFcn: 'defaultderiv'

divideFcn: 'dividerand'

divideMode: 'sample'

divideParam: [1x1 struct]

trainInd: [3 4 7 8 9 10 11]

valInd: [1 2]

testInd: [5 6]

stop: 'Performance goal met.'

num_epochs: 5

trainMask: {[11x11 double]}

valMask: {[11x11 double]}

testMask: {[11x11 double]}

best_epoch: 3

goal: 0.0030

states: {'epoch'  'time'  'perf'  'vperf'  'tperf'  'mu'  'gradient'  'val_fail'}

epoch: [0 1 2 3 4 5]

time: [0.2610 0.3960 0.4200 0.4560 0.4740 0.4940]

perf: [0.5254 0.2044 0.1309 0.0548 0.0362 0.0028]

vperf: [0.3965 0.1823 0.2113 0.1067 0.1128 0.1507]

tperf: [0.5361 0.2193 0.1852 0.1515 0.1599 0.1454]

mu: [1.0000e-03 1.0000e-04 1.0000e-05 1.0000e-04 1.0000e-05 1.0000e-06]

gradient: [0.1669 0.1778 0.2073 0.0977 0.1404 0.0221]

val_fail: [0 0 1 0 1 2]

best_perf: 0.0548

best_vperf: 0.1067

best_tperf: 0.1515

>> a=sim(net,p)

a =

Columns 1 through 8

0.0013    0.0051    0.0045    0.0015    0.0715    0.0049    0.0213    0.0061

0.0166    0.0020    0.0000    0.0162    0.0182    0.0014    0.0585    0.2230

0.0028    0.0008    0.9517    0.0128    0.0020    0.0786    0.0384    0.0019

0.5422    0.0063    0.0959    0.2451    0.0036    0.0002    0.1700    0.0452

0.0163    0.0018    0.0806    0.0290    0.0041    0.0190    0.0069    0.0727

0.0145    0.0205    0.0625    0.1302    0.0261    0.0186    0.0421    0.1343

0.1057    0.0064    0.0484    0.0828    0.0254    0.0115    0.8728    0.6152

0.0722    0.0039    0.0013    0.0021    0.1279    0.0011    0.5016    0.9676

0.0072    0.0062    0.0438    0.0679    0.6085    0.2168    0.9540    0.9995

0.2047    0.0338    0.0695    0.0140    0.1626    0.0000    0.0356    0.2438

0.0000    0.0053    0.0404    0.0366    0.0352    0.9510    0.0079    0.1147

Columns 9 through 11

0.0179    0.0465    0.0152

0.0624    0.0044    0.0029

0.0247    0.0006    0.0424

0.0645    0.0005    0.0003

0.0520    0.0019    0.0209

0.0285    0.0044    0.0237

0.2399    0.0094    0.0061

0.2872    0.2565    0.0020

0.9618    0.5802    0.1597

0.2327    0.5602    0.0000

0.0070    0.0017    0.9176

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值