python高次方程求根_Python退火算法在高次方程的应用

一,简介

退火算法不言而喻,就是钢铁在淬炼过程中失温而成稳定态时的过程,热力学上温度(内能)越高原子态越不稳定,而温度有一个向低温区辐射降温的物理过程,当物质内能不再降低时候该物质原子态逐渐成为稳定有序态,这对我们从随机复杂问题中找出最优解有一定借鉴意义,将这个过程化为算法,具体参见其他资料。

二,计算方程

我们所要计算的方程是f(x) = (x - 2) * (x + 3) * (x + 8) * (x - 9),是一个一元四次方程,我们称为高次方程,当然这个函数的开口是向上的,那么在一个无限长的区间内我们可能找不出最大值点,因此我们尝试在较短区间内解最小值点,我们成为最优解。

解法1:

毫无疑问,数学方法多次求导基本可以解出,但是这个过程较复杂,还容易算错,我就不赘述了,读者有时间自己可以尝试解一下。

解法二:

这个解法就是暴力解决了,我们这里只求解区间[-10,10]上的最优解,直接随机200个点,再除以10(这样可以得到非整数横坐标),再依此计算其纵坐标f(x),min{f(x)}一下,用list的index方法找出最小值对应位置就行了,然后画出图形大致瞄一瞄。

直接贴代码:

1 importrandom2 importmatplotlib.pyplot as plt3

4 list_x =[]5 #for i in range(1):

6 ##print(random.randint(0,100))

7 #for i in range(0,100):

8 #print("sss",i)

9 #10 #list_x.append(random.randint(0,100))

11 for i in range(-100,100):12 list_x.append(i/10)13

14 print("横坐标为:",list_x)15 print(len(list_x))16

17

18 list_y =[]19 for x inlist_x:20 #print(x)

21 #y = x*x*x - 60*x*x -4*x +6

22 y = (x - 2) * (x + 3) * (x + 8) * (x - 9)23 list_y.append(y)24 print("纵坐标为:",list_y)25

26 #经验证,这里算出来的结果6.5和最优解1549都是对的

27 print("最小值为:",min(list_y))28 num =min(list_y)29 print("最优解:",list_y.index(num)/10)30 print("第",list_y.index(num)/10-10,"个位置取得最小值")31

32 plt.plot(list_x, list_y, label='NM')33 #plt.plot(x2, y2, label='Second Line')

34 plt.xlabel('X') #横坐标标题

35 plt.ylabel('Y') #纵坐标标题

36 #plt.title('Interesting Graph\nCheck it out',loc="right") #图像标题

37 #plt.title('Interesting Graph\nCheck it out')

38 plt.legend() #显示Fisrt Line和Second Line(label)的设置

39 plt.savefig('C:/Users/zhengyong/Desktop/1.png')40 plt.show()

得到如下结果:

那么我们得出最优解的坐标是(6.5,-1549.6875),结果先放这里,接下来用退火算法看能不能解出。

解法三:

我们看一张图(解法二中的方法得出的图),然后讲讲退火算法的最核心的思想。

首先,先随机一个[-10.10]之间的随机解,作为初始解空间,比方说随机了一个位于[-2.5.2.5]中最高的那个点就是点1(横坐标为x1),他有对于的纵坐标的值y1,这时候我们把这个点的横坐标随机加或者减去一个值(注意这个值的大小很重要,我们先叫他随机移动值),加或者减后得到新的横坐标的值x2,再算出这个横坐标的对应纵坐标(y2),对比之前的纵坐标的大小,这里设置

delta = y2-y1,发现无论怎样都是小于原先的纵坐标(前提是随机移动值足够小),这时候我们把新得到的x2赋值给x1,这时候现在的x2的值传给x1,x1是原先随机的值,这个过程可以重复iter_num 次,大小就根据自己的区间来。

上述的整个过程是在一个温度下进行的,这个过程结束后我们用温度更新公式再次的更新温度,再去重复上述步骤。

温度更新我是用的常用的公式是T(t)=aT0(t-1),其中0.85≦a≦0.99。也可用相应的热能衰减公式来计算,T(t)=T0/(1+lnt),t=1,2,3,...,这都是简单的状态更新方法。

也就是说,不管你随机的是几我都能朝着优化的方向前进(前提是非最优点)。

其次,点2 是同理的,区别在于他是局部最优解,那么跳出这个局部最优解的机制是什么呢?

若初始点是(x3,y3),然后用上述方法得出(x4,y4),在点二处得到的delta肯定是大于0的,那么怎么办呢?当大于0的时候我们每次都有一定的概率来接受这个看起来不是最优的点,叫Metropolis准则,具体是这样的:

这里的E就是y,T就是当前温度,delta小于0就是百分百接受新值,否者就是按照这个概率接受,当迭代多次的时候,每次向右移动的步长累加到点1 时候他就有可能找到最终的最优解了,步长是累加的但是概率是累成的,意味着这个概率很小,但是一旦迭代次数多久一定会跑出来到最优解处。

最优,点3不解释了哈,和上面一样。

那么我们上代码:

1 #自己改写的退火算法计算方程(x - 2) * (x + 3) * (x + 8) * (x - 9)的计算方法

2 #class没啥用

3 importnumpy as np4 importmatplotlib.pyplot as plt5 from matplotlib importpyplot as plt6

7

8 #设置基本参数

9 #T初始温度,T_stop,iter_num每个温度的迭代次数,Q温度衰减次数

10 classTuihuo_alg():11 def __init__(self,T_start,iter_num,T_stop,Q,xx,init_x):12 self.T_start =T_start13 self.iter =iter_num14 self.T_stop =T_stop15 self.Q =Q16 self.xx =xx17 self.init_x =init_x18 #def cal_x2y(self):

19 #return (x - 2) * (x + 3) * (x + 8) * (x - 9)

20

21

22 if __name__ == '__main__':23

24 defcal_x2y(x):25 #print((x - 2) * (x + 3) * (x + 8) * (x - 9))

26 return (x - 2) * (x + 3) * (x + 8) * (x - 9)27 T_start = 1000

28 iter_num = 1000

29 T_stop = 1

30 Q = 0.95

31 K = 1

32 l_boundary = -10

33 r_boundary = 10

34 #初始值

35 xx = np.linspace(l_boundary, r_boundary, 300)36 yy =cal_x2y(xx)37 init_x =10 * ( 2 * np.random.rand() - 1)38 print("init_x:",init_x)39

40 t =Tuihuo_alg(T_start,iter_num,T_stop,Q,xx,init_x)41

42 val_list =[init_x]43 while T_start>T_stop:44 for i inrange(iter_num):45 init_y =cal_x2y(init_x)46 #这个区间(2 * np.random.rand() - 1)本身是(-1,1),所以加上就是一个随机加或者减过程

47 new_x = init_x + (2 * np.random.rand() - 1)48 if l_boundary <= new_x <=r_boundary:49 new_y =cal_x2y(new_x)50 #print("new_x:",new_x)

51 #print('new_y:',new_y)

52 delta = new_y - init_y #新减旧

53 if delta <0:54 init_x =new_x55 else:56 p = np.exp(-delta / (K *T_start))57 if np.random.rand() <58 init_x="new_x59">

60 #print("当前温度:",T_start)

61 T_start = T_start *Q62

63 print("最优解x是:", init_x) #这里最初写的是new_x,所以结果一直不对

64 print("最优解是:", init_y)65 #比如我加上new_x,真假之间的误差实际就是最后一次的赋值“init_x = new_x”

66 print("假最优解x是:", new_x) #这里最初写的是new_x,所以结果一直不对

67 print("假最优解是:", new_y)68

69 xx = np.linspace(l_boundary,r_boundary,300)70 yy =cal_x2y(xx)71 plt.plot(xx, yy, label='Tuihuo')72 #plt.plot(x2, y2, label='Second Line')

73 plt.xlabel('X for tuihuo') #横坐标标题

74 plt.ylabel('Y for tuihuo') #纵坐标标题

75 #plt.title('Interesting Graph\nCheck it out',loc="right") #图像标题

76 #plt.title('Interesting Graph\nCheck it out')

77 plt.legend() #显示Fisrt Line和Second Line(label)的设置

78 plt.savefig('C:/Users/zhengyong/Desktop/1.png')79 plt.show()

这里用了class,发现并不需要,但是不想改了,就这样吧。

最优结果为:

得出的示意图为:

三,总结

退火算法的具体思想我没怎么讲,但是核心的点我都写出来了,经过验证发现退火算法得出了(6.551677228904226,-1548.933671426107)的最优解,看看解法二的(6.5,-1549.6875),我们发现,呵呵,差不多,误差来讲的话,能接受,当然读者也可以多跑几个数据出来验证。

我的实验环境是Python3.6,Numpy1.14.3,matplotlib2.2.2,64位win10,1709教育版,OS内核16299.547,就这样吧,尽量讲详细点。

58>
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值