python爬取去哪里_Python 爬取了马蜂窝的出行数据,告诉你这个夏天哪里最值得去!...

def find_cat_url(url):

headers = {'User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:23.0) Gecko/20100101 Firefox/23.0'}

req=request.Request(url,headers=headers)

html=urlopen(req)

bsObj=BeautifulSoup(html.read(),"html.parser")

bs = bsObj.find('div',attrs={'class':'hot-list clearfix'}).find_all('dt')

cat_url = []

cat_name = []

for i in range(0,len(bs)):

for j in range(0,len(bs[i].find_all('a'))):

cat_url.append(bs[i].find_all('a')[j].attrs['href'])

cat_name.append(bs[i].find_all('a')[j].text)

cat_url = ['http://www.mafengwo.cn'+cat_url[i] for i in range(0,len(cat_url))]

return cat_url

def find_city_url(url_list):

city_name_list = []

city_url_list = []

for i in range(0,len(url_list)):

driver = webdriver.Chrome()

driver.maximize_window()

url = url_list[i].replace('travel-scenic-spot/mafengwo','mdd/citylist')

driver.get(url)

while True:

try:

time.sleep(2)

bs = BeautifulSoup(driver.page_source,'html.parser')

url_set = bs.find_all('a',attrs={'data-type':'目的地'})

city_name_list = city_name_list +[url_set[i].text.replace(' ','').split()[0] for i in range(0,len(url_set))]

city_url_list = city_url_list+[url_set[i].attrs['data-id'] for i in range(0,len(url_set))]

js="var q=document.documentElement.scrollTop=800"

driver.execute_(js)

time.sleep(2)

driver.find_element_by_class_name('pg-next').click()

except:

break

driver.close()

return city_name_list,city_url_list

url = 'http://www.mafengwo.cn/mdd/'

url_list = find_cat_url(url)

city_name_list,city_url_list=find_city_url(url_list)

city = pd.DataFrame({'city':city_name_list,'id':city_url_list})

二、获得城市信息城市数据分别从以下几个页面获取:

(a)小吃页面

(b)景点页面

3eabeb0489d54430bebd9b96d51bdd8a.jpeg

(c)标签页面

53b1b4c250344634ace6b04e1a47e853.jpeg

我们将每个城市获取数据的过程封装成函数,每次传入之前获得的城市编码,部分代码如下:

def get_city_info(city_name,city_code):

this_city_base = get_city_base(city_name,city_code)

this_city_jd = get_city_jd(city_name,city_code)

this_city_jd['city_name'] = city_name

this_city_jd['total_city_yj'] = this_city_base['total_city_yj']

try:

this_city_food = get_city_food(city_name,city_code)

this_city_food['city_name'] = city_name

this_city_food['total_city_yj'] = this_city_base['total_city_yj']

except:

this_city_food=pd.DataFrame()

return this_city_base,this_city_food,this_city_jd

def get_city_base(city_name,city_code):

url = 'http://www.mafengwo.cn/xc/'+str(city_code)+'/'

bsObj = get_static_url_content(url)

node = bsObj.find('div',{'class':'m-tags'}).find('div',{'class':'bd'}).find_all('a')

tag = [node[i].text.split()[0] for i in range(0,len(node))]

tag_node = bsObj.find('div',{'class':'m-tags'}).find('div',{'class':'bd'}).find_all('em')

tag_count = [int(k.text) for k in tag_node]

par = [k.attrs['href'][1:3] for k in node]

tag_all_count = sum([int(tag_count[i]) for i in range(0,len(tag_count))])

tag_jd_count = sum([int(tag_count[i]) for i in range(0,len(tag_count)) if par[i]=='jd'])

tag_cy_count = sum([int(tag_count[i]) for i in range(0,len(tag_count)) if par[i]=='cy'])

tag_gw_yl_count = sum([int(tag_count[i]) for i in range(0,len(tag_count)) if par[i] in ['gw','yl']])

url = 'http://www.mafengwo.cn/yj/'+str(city_code)+'/2-0-1.html '

bsObj = get_static_url_content(url)

total_city_yj = int(bsObj.find('span',{'class':'count'}).find_all('span')[1].text)

return{'city_name':city_name,'tag_all_count':tag_all_count,'tag_jd_count':tag_jd_count,

'tag_cy_count':tag_cy_count,'tag_gw_yl_count':tag_gw_yl_count,

'total_city_yj':total_city_yj}

def get_city_food(city_name,city_code):

url = 'http://www.mafengwo.cn/cy/'+str(city_code)+'/gonglve.html'

bsObj = get_static_url_content(url)

food=[k.text for k in bsObj.find('ol',{'class':'list-rank'}).find_all('h3')]

food_count=[int(k.text) for k in bsObj.find('ol',{'class':'list-rank'}).find_all('span',{'class':'trend'})]

return pd.DataFrame({'food':food[0:len(food_count)],'food_count':food_count})

def get_city_jd(city_name,city_code):

url = 'http://www.mafengwo.cn/jd/'+str(city_code)+'/gonglve.html'

bsObj = get_static_url_content(url)

node=bsObj.find('div',{'class':'row-top5'}).find_all('h3')

jd = [k.text.split(' ')[2] for k in node]

node=bsObj.find_all('span',{'class':'rev-total'})

jd_count=[int(k.text.replace(' 条点评','')) for k in node]

return pd.DataFrame({'jd':jd[0:len(jd_count)],'jd_count':jd_count})

三、数据分析PART1:城市数据首先我们看一下游记数量最多的TOP10城市:

9e0da93405b540618ad481d472c68ce0.jpeg

游记数量TOP10数量基本上与我们日常所了解的热门城市相符,我们进一步根据各个城市游记数量获得全国旅行目的地热力图:

0e87a21815804525b380b9e5bbd00556.jpeg

看到这里,是不是有种似曾相识的感觉,如果你在朋友圈晒的足迹图与这幅图很相符,那么说明蚂蜂窝的数据与你不谋而合。

最后我们看一下大家对于各个城市的印象是如何的,方法就是提取标签中的属性,我们将属性分为了休闲、饮食、景点三组,分别看一下每一组属性下大家印象最深的城市:

d65d181683eb41818f3286aa6e484cc8.jpeg

看来对于蚂蜂窝的用户来说,厦门给大家留下的印象是非常深的,不仅游记数量充足,并且能从中提取的有效标签也非常多。重庆、西安、成都也无悬念地给吃货们留下了非常深的印象,部分代码如下:

bar1 = Bar("餐饮类标签排名")

bar1.add("餐饮类标签分数", city_aggregate.sort_values('cy_point',0,False)['city_name'][0:15],

city_aggregate.sort_values('cy_point',0,False)['cy_point'][0:15],

is_splitline_show =False,xaxis_rotate=30)

bar2 = Bar("景点类标签排名",title_top="30%")

bar2.add("景点类标签分数", city_aggregate.sort_values('jd_point',0,False)['city_name'][0:15],

city_aggregate.sort_values('jd_point',0,False)['jd_point'][0:15],

legend_top="30%",is_splitline_show =False,xaxis_rotate=30)

bar3 = Bar("休闲类标签排名",title_top="67.5%")

bar3.add("休闲类标签分数", city_aggregate.sort_values('xx_point',0,False)['city_name'][0:15],

city_aggregate.sort_values('xx_point',0,False)['xx_point'][0:15],

legend_top="67.5%",is_splitline_show =False,xaxis_rotate=30)

grid = Grid(height=800)

grid.add(bar1, grid_bottom="75%")

grid.add(bar2, grid_bottom="37.5%",grid_top="37.5%")

grid.add(bar3, grid_top="75%")

grid.render('城市分类标签.html')

PART2:景点数据我们提取了各个景点评论数,并与城市游记数量进行对比,分别得到景点评论的绝对值和相对值,并据此计算景点的人气、代表性两个分数,最终排名TOP15的景点如下:

bfe4b3580f114cba9b77805d817e9f09.jpeg

蚂蜂窝网友对于厦门真的是情有独钟,鼓浪屿也成为了最具人气的景点,在城市代表性方面西塘古镇和羊卓雍措位列前茅。暑假之际,如果担心上排的景点人太多,不妨从下排的景点中挖掘那些人少景美的旅游地。

PART3:小吃数据最后我们看一下大家最关注的的与吃相关的数据,处理方法与PART2景点数据相似,我们分别看一下最具人气和最具城市代表性的小吃。

5e76755cc71a46798854c7a87ca064b3.jpeg

出乎意料,蚂蜂窝网友对厦门果真爱得深沉,让沙茶面得以超过火锅、烤鸭、肉夹馍跻身最具人气的小吃。

在城市代表性方面,海鲜的出场频率非常高,这点与大(ben)家(ren)的认知也不谋而合,PART2与3的部分代码如下:

bar1 = Bar("景点人气排名")

bar1.add("景点人气分数", city_jd_com.sort_values('rq_point',0,False)['jd'][0:15],

city_jd_com.sort_values('rq_point',0,False)['rq_point'][0:15],

is_splitline_show =False,xaxis_rotate=30)

bar2 = Bar("景点代表性排名",title_top="55%")

bar2.add("景点代表性分数", city_jd_com.sort_values('db_point',0,False)['jd'][0:15],

city_jd_com.sort_values('db_point',0,False)['db_point'][0:15],

is_splitline_show =False,xaxis_rotate=30,legend_top="55%")

grid=Grid(height=800)

grid.add(bar1, grid_bottom="60%")

grid.add(bar2, grid_top="60%",grid_bottom="10%")

grid.render('景点排名.html')

文中所有涉及到的代码已经发到Github上了,欢迎大家自取:

http://github.com/shujusenlin/mafengwo_data。

作者:徐麟,知乎同名专栏作者,目前就职于上海唯品会产品技术中心,哥大统计数据狗,从事数据挖掘&分析工作,喜欢用R&Python玩一些不一样的数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值