点击蓝字可关注
特征值和特征向量的计算
特征值和特征向量的几何意义
特征值和特征向量确实有很明确的几何意义,矩阵(既然讨论特征向量的问题,当然是方阵,这里不讨论广义特征向量的概念,就是一般的特征向量)乘以一个向量的结果仍是同维数的一个向量。因此,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量。
那么变换的效果是什么呢?这当然与方阵的构造有密切的关系,比如可以取适当的二维方阵,使得这个变换的效果就是将平面上的二维变量逆时针旋转30度。这时,我们可以思考一个问题,有没有向量在这个变换下不改变方向呢?可以想一下,除了零向量,没有其他向量可以在平面上旋转30度而不改变方向的,所以这个变换对应的矩阵(或者说这个变换自身)没有特征向量(注意:特征向量不能是零向量)。
综上所述,一个变换(或者说矩阵)的特征向量就是这样一种向量,它经过这种特定的变换后保持方向不变,只是进行长度上的伸缩而已。再想想特征向量的原始定义:
可以很容易看出,cx是方阵A对向量x进行变换后的结果,显然cx和x的方向相同。而且x是特征向量的话,ax也是特征向量(a是标量且不为零),所以特征向量不是一个向量而是一个向量族。
另外,特征值只不过反映了特征向量在变换时的伸缩倍数而已。对一个变换而言,特征向量指明的方向才是很重要的,特征值不那么重要。虽然我们求这两个量时先求出特征值,但特征向量才是更本质的东西!特征向量是指经过指定变换(与特定矩阵相乘)后不发生方向改变的那些向量,特征值是指在经过这些变换后特征向量的伸缩的倍数。
睡猫学术
微信号|lh2020902
知乎|睡猫流
每天进步一点点~
可点在看