python from函数用法_python yield和yield from用法总结详解

python yield和yield from用法总结

yield 作用:

注: generator的next()方法在python 2中为next(),但在python 3中为 __next__() 【next的前后各是两个下划线】

把一个函数变成一个generator,带有yield的函数不再是一个普通函数。即:一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。

用print实现打印斐波拉切数列 ——基础版#!/usr/bin/env python

# -*- coding: utf-8 -*-def fab(max):

n , a, b = 0, 0 , 1

while n < max:

print(b)

a, b = b, a + b

n = n + 1if __name__ == '__main__':

fab(6) # 1 1 2 3 5 8

用yield实现打印斐波拉切数列——升级版#!/usr/bin/env python

# -*- coding: utf-8 -*-def fab(max):

n , a, b = 0, 0 , 1

while n < max:

yield b

a, b = b, a + b

n = n + 1if __name__ == '__main__':

for n in fab(6): # 1 1 2 3 5 8

print(n)

如何判断一个函数是否是一个特殊的generator函数#!/usr/bin/env python

# -*- coding: utf-8 -*-from inspect import isgeneratorfunction

def fab(max):

n , a, b = 0, 0 , 1

while n < max:

yield b

a, b = b, a + b

n = n + 1if __name__ == '__main__':

f1 = fab(3)

# True fab是一个generator function

print(isgeneratorfunction(fab))

# False fab(3)不是一个generator function

# 而fab(3)是调用fab返回的一个generator print(isgeneratorfunction(fab(3)))

用yield实现大文件读取#!/usr/bin/env python

# -*- coding: utf-8 -*-def read_file(fpath):

BLOCK_SIZE = 100

with open(fpath, "rb") as f:

while True:

block = f.read(BLOCK_SIZE)

if block:

yield block else:

returnif __name__ == '__main__':

fpath = "/home/exercise-python3.7.1/vote/mysite/mysite/polls/test.txt"

read_gen = read_file(fpath)

print(read_gen.__next__())

print(read_gen.__next__())

print(read_gen.__next__())

print(read_gen.__next__())

# for循环会自动调用generatr的__next__()方法,故输出效果同如上的4个print 【内容较短,4个print就将test.txt中的内容输出完了】 for data in read_gen:

print(data)

yield 和 yield from 用法对比

使用yield拼接可迭代对象#!/usr/bin/env python

# -*- coding: utf-8 -*-if __name__ == '__main__':

astr = "ABC"

alist = [1, 2, 3]

adict = {"name": "wangbm", "age": 18}

# generate

agen = (i for i in range(4, 8))

def gen(*args, **kw):

for item in args:

for i in item:

yield i

new_list = gen(astr, alist, adict, agen)

print(list(new_list))

# ['A', 'B', 'C', 1, 2, 3, 'name', 'age', 4, 5, 6, 7]

使用yield from拼接可迭代对象#!/usr/bin/env python

# -*- coding: utf-8 -*-if __name__ == '__main__':

astr = "ABC"

alist = [1, 2, 3]

adict = {"name": "wangbm", "age": 18}

# generate

agen = (i for i in range(4, 8))

def gen(*args, **kw):

for item in args:

yield from item

new_list = gen(astr, alist, adict, agen)

print(list(new_list))

# ['A', 'B', 'C', 1, 2, 3, 'name', 'age', 4, 5, 6, 7]

结论:

由上面两种方式对比,可以看出,yield from后面加上可迭代对象,他可以把可迭代对象里的每个元素一个一个的yield出来,对比yield来说代码更加简洁,结构更加清晰。相关学习推荐:python视频教程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值