来自:集智小编
前言
很多人看到可能会说“调包侠,也不想一下包里面的内容,你自己写的出来吗”。
我只想说,如果你自己真的这么厉害或者你对这方面特别感兴趣,那你自己去琢磨,看看文档,把它了解的一个彻底。反之就是知道怎么用就好了。
很简单的道理,我会开车就行,难道我还要学会怎么制造汽车么?如果你对汽车特别热爱的话,那肯定对于车的一系列性能和其中的一些配件很了解。
咱们先看看代码吧
仔细数一下真的只有十行
主要咱们还是用到了ImageAI,这些小编解释一下如何借助ImageAI轻松实现目标检测
使用ImageAI执行目标检测需要的步骤:
1.在电脑上安装Python
2.安装ImageAI及其环境依赖
3.下载目标检测模块文件
4.运行示例代码,就是我们展示的那10行
第一步安装Python
我想这个就不用多说了,百度一下都有安装教程的。
第二步通过pip安装如下环境依赖
1.Tensorflow
2.Numpy
3.SciPy
4.OpenCV
5.Pillow
6.Matplotlib
7.H5py
8.Keras
9.ImageAI
以上模块都可以通过cmd进行pip安装
第三步下载目标检测模块文件
到了这里我们已经安装好了所有依赖,就可以准备写自己的首个目标检测代码了。
创建一个Python文件,然后将如下代码写到文件中,再把RetinaNet模型文件以及你想检测的图像拷贝到包含该Python文件的文件夹里。
目标检测代码就是上面咱们说到的十行代码
运行代码结果展示
代码解释
1-3行代码:
第1行导入ImageAI的目标检测类;
第2行导入Python的os类;
第3行定义一个变量,用来保存Python文件、RetianNet模型文件和图片所在文件夹的路径。
4-8行代码:
第4行定义目标检测类;
第5行将模型类型设置为RetinaNet;
第6行将模型的路径设为RetinaNet模型文件所在路径;
第7行将模型载入目标检测类;
第8行调用检测函数,并解析输入图片和输出图片的路径。
9-10行代码
第9行迭代所有detector.detectObjectsFromImage函数返回的结果;
第10行打印出模型检测出的图片中每个目标的类型和概率。
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对小编的支持。