
本文利用已有数据通过申MYSQL对淘宝用户行为进行分析,主要分为几个部分:
1、观察理解数据。因为是在已有数据的基础上进行分析,因此先观察数据,思考能在数据中获取到什么有用的信息;
2、提出问题。观察理解数据后,针对关键指标提出待解决问题。
3、对数据进行清洗。
4、构建模型。
5、数据可视化
6、总结建议。
一、理解数据
数据来源
User Behavior Data from Taobao for Recommendation-数据集-阿里云天池tianchi.aliyun.com
数据集介绍

本数据集随机抽取了从2017年11月23号到2017年12月3号大约一亿条淘宝用户行为数据,包括点击数量、添加购物车数据量、收藏数量以及购买数量。这个数据集和MovieLens-20M非常相似,每一行代表了一个特定用户-商品的组合,它们由用户编号、商品编号、商品类别编号、用户行为和时间戳构成。
由于本数据集数据量过大,因为 选取前100万条数据进行分析 。
二、提出问题
1、电商分析常用数据指标

2、本次分析的问题以及相应的指标
本次通过对淘宝用户行为数据分析,解决以下问题:
(1)用户从点击浏览、收藏、加入购物车以及追踪购买整个流程的各个环节的流量指标和转化率,提出提高转化率的建议。
(2)研究不同时间、不同时段的用户活跃程度,了解用户的时间行为模式。
(3)研究哪些购买次数最多以及用户复购次数分布情况,找出核心用户群体,进行精准营销。
(4)研究销量TOP N商品以及不同商品的购买次数,优化商品的结构。

三、数据清洗
1、选择子集
导入全部字段
2、列名重命名
原数据集缺少字段名,因此在导入时调价字段名和类型,再导入CSV。

建表时字段均为“不是null”,因此保证无缺失值。
3、去除重复值

根据查询结果,无重复值,不需要去重。
4、一致化处理
向原表中添加datetime、date以及time三个字段,将“时间戳”转化为日期时间、日期和时间添加进相应字段中。


5、异常处理
由于原数据是包括了2017年11月25日到2017年12月3日之间有行为的用户行为,查看异常数据


验证数据准确性

四、构建模型。
(一)用户行为模式
1、不同日期流量指标。PV、UV、人均页面访问量。




通过结果可以看出,12月22号和12月3号两天(周末)无论是PV还是UV都有明显的上涨,根据用户的行为,商家可以考虑在周末进行相应的营销活动,拓展渠道。而均访问量基本持平,保持在13左右。
2、不同时段的流量指标。



通过对一天中不同时段的流量指标进行分析,发现PV和UV总体上呈正相关,从6点到23点一直处于上升趋势,尤其是19点到23点之间,说明大部分的用户在晚上时间段进行购物。人均访问量在19点到23点也有明显的提升。
(二)用户购买流程转化情况
1、各行为类型用户数量


从结果结果可以看出,从浏览到收藏或加入购物车这一环节的转化率并不高,加入购物车紧张PV的6.19%,收藏占比为3.14%,说明如何提高点击转化率才是重点,优化商品的筛选功能,优化产品页面。
2、不同时段各种用户行为占比

在不同时段上,用户加入购物车和收藏的行为占比相对稳定,而购买的占比重,11-13点有小幅度的上涨。
3、不同复购次数的人数


从结果上看,购买了两次的人数最多,占购买次数大于一次的35.54%,上次的23.59%,并随着次数额增多递减,符合用户的消费习惯,其中消费次数最多的用户消费次数达72次。用户复购率66.21%。

通过以上 分析,可以帮助商家找到高价值的客户,了解高价值客户的购买行为,通过有针对性的进行个性化推荐等方式提高销量。
(三)商品销售分析
1、销量前二十的商品

针对产品的销量情况,商家可以优化产品结构,调整产品的页面等有利于用户快速找打自己所需商品,提高产品的销量。
2、不同购买次数的商品数量


从购买次数来看,仅仅别购买一次的商品占了88.45%,一次和两次的占比达97.38%,没有什么特殊的规律。
五、结论
根据以上对用户行为的数据进行分析,可以得出以下结论:
1、PV和UV在周末两天显著增加,或是由于平台促销活动,或是休息日的影响,针对这种情况,商家可以在周末进行一些促销活动,提高产品销量。
2、在一天的不同时间段中,从早上六点到晚上23点稳步上升,尤其是19点到23点期间,说明大部分的用户更喜欢在晚上进行商品的浏览以及购买,商家应该抓住点击量和独立访客数多的时候开展营销活动。
3、加入购物车的转化率仅为6.19%,转化率低,商家应该考虑如何提高商品的转化率。比如优化关键词,提高产品搜索的准确性。
4、用户商品复购率达66.21%,其中两次购买的人数最多,可以通过商品优惠推送等方式进一步提高客户的复购率,大部分用户追求的是性价比,所以只有提供物美价廉大商品才能增强用户的忠诚度。特别是对于复购次数较多的用户,要了解他们的购买行为,有针对性的进行个性化推荐以及给与一些优惠政策,提高用户自身的忠诚度以及进行病毒式传播。
5、对于热销的商品,可以优化商品详情页,将销量高的商品置于容易客户查找的位置,便于客户由浏览化成为购买。