原视频:
https://www.bilibili.com/video/av25949201www.bilibili.com对于复变函数:
它具有两面性,一方面,可以看成复数到复数的映射,如上式所示。
另一方面,可以看做是一个二维平面上的点到另一个二维平面上的点的映射。
下三角算子为:
而复变函数满足:
放在复变函数上,就是:
下面来证明这个性质。
回到之前的第一个角度:
两边同时对x求导:
没什么特别的,记为①式。
两边同时对y求导:
记为②式。
对比①②,它们的实部和虚部应当相等,即:
移项,即证。