concatenate python_python中numpy.concatenate()函数的使用

numpy库数组拼接np.concatenate

原文:https://blog.csdn.net/zyl1042635242/article/details/43162031

思路:numpy提供了numpy.concatenate((a1,a2,...), axis=0)函数。能够一次完成多个数组的拼接。其中a1,a2,...是数组类型的参数

示例3:

>>> a=np.array([1,2,3])

>>> b=np.array([11,22,33])

>>> c=np.array([44,55,66])

>>> np.concatenate((a,b,c),axis=0)  # 默认情况下,axis=0可以不写

array([ 1,  2,  3, 11, 22, 33, 44, 55, 66]) #对于一维数组拼接,axis的值不影响最后的结果

>>> a=np.array([[1,2,3],[4,5,6]])

>>> b=np.array([[11,21,31],[7,8,9]])

>>> np.concatenate((a,b),axis=0)

array([[ 1,  2,  3],

[ 4,  5,  6],

[11, 21, 31],

[ 7,  8,  9]])

>>> np.concatenate((a,b),axis=1)  #axis=1表示对应行的数组进行拼接

array([[ 1,  2,  3, 11, 21, 31],

[ 4,  5,  6,  7,  8,  9]])

对numpy.append()和numpy.concatenate()两个函数的运行时间进行比较

示例:

>>> from time import clock as now

>>> a=np.arange(9999)

>>> b=np.arange(9999)

>>> time1=now()

>>> c=np.append(a,b)

>>> time2=now()

>>> print time2-time1

28.2316728446

>>> a=np.arange(9999)

>>> b=np.arange(9999)

>>> time1=now()

>>> c=np.concatenate((a,b),axis=0)

>>> time2=now()

>>> print time2-time1

20.3934997107

可知,concatenate()效率更高,适合大规模的数据拼接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值