典型相关分析_别说相关太简单,且听松哥说相关

本文详细介绍了各种相关分析方法,包括计量资料间的Pearson和Spearman相关,等级资料间的Spearman、伽玛、Kendall tau-b和tau-c,分类变量的相关分析以及偏相关、部分相关和典型相关分析。每种方法适用的条件和统计量进行了阐述,强调正确选择相关分析需考虑研究目的、设计和资料类型。
摘要由CSDN通过智能技术生成

变量分三种,计量(数值变量、连续变量、定距变量等不同叫法)、等级(有序)和计数(分类、名义),因此变量的相关就有不同的形式。

一、两个计量资料之间的相关

(一)pearson相关:必须双变量符合正态分布

(二)Spearman相关:双变量不符合正态分布或者一个不符合正态分布、或者分布不清资料。对于服从Pearson相关系数的数据也可以计算Spearman相关系数,但统计效能比Pearson相关系数要低一些(不容易检测出两者事实上存在的相关关系)。

二、两个等级资料之间相关

(一)Spearman相关

(二)对于行和列都包含已排序值的表,请选择伽玛(对于 2 阶表,为零阶;对于 3 阶到 10 阶表,为条件)、Kendall 的 tau-b 和Kendall 的 tau-c。要根据行类别预测列类别,请选择 Somers 的 d。

(1)伽玛 (Gamma). 两个有序变量之间的对称相关性测量,它的范围是从 -1 到 1。绝对值接近 1 的值表示两个变量之间存在紧密的关系。接近 0 的值表示关系较弱或者没有关系。对于双向表,显示零阶伽玛。对于三阶表到 n 阶表,显示条件伽玛。

(2)Somers' d. 两个有序变量之间相关性测量,它的范围是从 -1 到 1。绝对值接近 1 的值表示两个变量之间存在紧密的关系,值接近 0 则表示两个变量之间关系很弱或没有关系。Somers 的 d 是伽玛的不对称扩展,不同之处仅在于它包含了未约束到自变量上的成对的数目。还将计算此统计的对称版本。

(3)Kendal

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值