得分:100
#include
#include
#define STACK_INIT_SIZE 100
#define STACKINCREMENT 10
#define MAX 20
typedef int VertexType;
typedef struct ArcNode//表结点
{
int adjvex;//弧所指向的顶点的位置
struct ArcNode *nextarc;
}ArcNode;
typedef struct VNode//头结点
{
VertexType data;//顶点信息
ArcNode *firstarc;//指向第一条依附该弧的顶点指针
}VNode,*AdjList;
typedef struct
{
AdjList vertices;
int vexnum;//图的**当前**顶点数
}ALGraph;
typedef struct//栈的定义
{
int *base;
int *top;
int stacksize;
}SqStack;
/栈的操作函数定义
void initialStack(SqStack *s)
{
s->base=(int *)malloc(STACK_INIT_SIZE*sizeof(int));
if(!s->base) exit(0);
s->top=s->base;
s->stacksize=STACK_INIT_SIZE;
}
void Push(SqStack *s,int e)
{
if(s->top-s->base>=s->stacksize)
{
s->base=(int *)realloc(s->base,(STACK_INIT_SIZE+STACKINCREMENT)*sizeof(int));
if(!s->base) exit(0);
s->top=s->base+s->stacksize;
s->stacksize+=STACKINCREMENT;
}
*(s->top)++=e;
}
void Pop(SqStack *s,int *e)
{
if(s->top==s->base) exit(0);
*e=*--(s->top);
}
void GetTop(SqStack *s,int *e)
{
if(s->top==s->base) exit(0);
*e=*(s->top-1);
}
int StackEmpty(SqStack *s)
{
if(s->base==s->top)
return(1);
else
return(0);
}
/创建图的邻接矩阵
void CreatAjacentMatrix(int *array,int n)//创建邻接矩矩阵(n行n列)
{
int a;
int i,j,flag=0;
printf("请输入一个%d行%d列的关于图的邻接矩阵:\n",n,n);
for(i=0;i
for(j=0;j
{
scanf("%d",&a);
*(array+i*n+j)=a;
}
}
void PrintAjacentMatrix(int *array,int n)
{
int i,j;
for(i=0;i
{
for(j=0;j
printf("%5d ",*(array+i*n+j));
printf("\n");
}
}
将邻接矩阵导出为图的邻接表形式
void CreatAdjList(int *array,int n,ALGraph *G)
{
int i,j;
ArcNode *p;//表结点
G->vexnum=n;//初始化顶点数
G->vertices=(VNode *)malloc((n+1)*sizeof(VNode));//头结点数组,开辟n+1长度的数组空间
for(i=1;i<=n;i++)//初始化头结点数组
{
G->vertices[i].data=i;
G->vertices[i].firstarc=NULL;
}
//
for(i=0;i
for(j=0;j
{
if(*(array+i*n+j)==1)
{
p=(ArcNode *)malloc(sizeof(ArcNode));
p->adjvex=j+1;
p->nextarc=G->vertices[i+1].firstarc;
G->vertices[i+1].firstarc=p;
}
}
}
void FindInDegree(ALGraph G,int *indegree)//对顶点求入度
{
int i,j;
ArcNode *p;
for(i=1;i<=G.vexnum;i++)
indegree[i]=0;//indispensable
for(i=1;i<=G.vexnum;i++)//对每个结点跑完整个邻接表
for(j=1;j<=G.vexnum;j++)
for(p=G.vertices[j].firstarc;p;p=p->nextarc)
if(G.vertices[i].data==p->adjvex)//==
indegree[i]++;
}
/拓扑排序算法
int TopologicalSort(ALGraph G)
{
//有向图采用邻接表存储结构
//若G无回路,则flag=0,输出G的顶点的一个拓扑序列,否则给出该有向图有回路的提示.
int i,count,k;
int *indegree=(int *)malloc((G.vexnum+1)*sizeof(int));
SqStack S;
ArcNode *p;
FindInDegree(G,indegree);//对顶点求入度indegree[G.vexnum]
initialStack(&S);//为避免重复检测入度为0的顶点,可另设一栈暂存放所有入度为0的顶点
for(i=1;i<=G.vexnum;i++)
if(!indegree[i])
Push(&S,i);//0入度点进栈
count=0;//对输出顶点计数,作为判断是否有回路的根据
while(!StackEmpty(&S))
{
Pop(&S,&i);
printf("%d ",i);//输出i号顶点并计数
count++;
for(p=G.vertices[i].firstarc;p;p=p->nextarc)
{
k=p->adjvex;//表结点的数据域,即对i号顶点的每个邻接点的入度减1
if(!(--indegree[k]))//若入度减少为0,则入栈
Push(&S,k);
}
}
if(count
return 0;
else
return 1;
}
void main()
{
int n;
int *A;
ALGraph G;
printf("请输入你想创建的邻接矩矩阵的行列数(即顶点数):\n");
scanf("%d",&n);
A=(int *)malloc(n*n*sizeof(int));
CreatAjacentMatrix(A,n);
printf("请输出图的邻接矩阵A:\n");
PrintAjacentMatrix(A,n);
CreatAdjList(A,n,&G);
printf("该有向图的一个拓扑排序结果如下所示:\n");
if(TopologicalSort(G))
printf("\n");
else
printf("该有向图有回路!\n");
}
运行结果如下:
图片附件: 游客没有浏览图片的权限,请 登录 或 注册