YOLO11-POSE预测返回结果分析

姿态估计是一项涉及识别图像中特定点(通常称为关键点)位置的任务。关键点可以代表物体的各个部分,如关节、地标或其他显著特征。关键点的位置通常用一组二维 [x, y] 或 三维 [x, y, visible] 坐标。

姿态估计模型的输出是一组边界框和代表图像中物体关键点的点,通常还包括每个点的置信度。姿态估计通常用于识别场景中物体的特定部分及其相互之间的位置关系。

YOLO-POSE 预测返回的是Python list类型的 Results 对象,包含的数据项很多,结构比较复杂,本文进行详细介绍。

YOLO11-POSE默认模型

YOLO11-POSE默认模型使用coco-pose数据集训练。

path: ../datasets/coco8-pose # dataset root dir
train: images/train # train images (relative to 'path') 
val: images/val # val images (relative to 'path') 
test: # test images (optional)

# Keypoints
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]

# Classes
names:
  0: person

在YOLO11 的默认姿势模型中,有 17 个关键点,每个关键点代表人体的不同部位。以下是每个索引到相应身体面部和关节的映射:

1. 鼻子
2. 左眼
3. 右眼
4. 左耳
5. 右耳
6. 左肩
7. 右肩
8. 左肘
9. 右肘
10. 左腕
11. 右手腕
12. 左髋关节
13. 右髋关节
14. 左膝
15. 右膝盖
16. 左脚踝
17. 右脚踝

下面结合实例进行具体分析。

Results实例

我们直接使用预训练模型yolo11n-pose.pt对bus.jpg图像进行检测。

在这里插入图片描述

检测完成后,输出的图像:

在这里插入图片描述

只输入一张图片,results列表只有一个值results[0]。

从图中可以看出,检出4个’person’及其关键点,其中最左侧的只检出边界框,最右侧的只有部分关键点。

print(results[0]):

boxes: ultralytics.engine.results.Boxes object
keypoints: ultralytics.engine.results.Keypoints object
masks: None
names: {0: 'person'}
obb: None
orig_img: array([[[119, 146, 172],
        [121, 148, 174],
        [122, 152, 177],
        ...,
        [161, 171, 188],
        [160, 170, 187],
        [160, 170, 187]],
       ...,

       [[123, 122, 126],
        [145, 144, 148],
        [176, 175, 179],
        ...,
        [ 95,  85,  91],
        [ 96,  86,  92],
        [ 98,  88,  94]]], shape=(1080, 810, 3), dtype=uint8)
orig_shape: (1080, 810)
path: 'D:\\work3\\ultralytics-main\\bus.jpg'
probs: None
save_dir: 'runs\\pose\\predict'
speed: {'preprocess': 16.387100011343136, 'inference': 463.7020000081975, 'postprocess': 23.11430001282133}


print(result[0].boxes)

cls: tensor([0., 0., 0., 0.])
conf: tensor([0.8870, 0.8810, 0.8779, 0.4577])
data: tensor([[4.7990e+01, 3.9991e+02, 2.4354e+02, 9.0587e+02, 8.8704e-01, 0.0000e+00],
        [6.6901e+02, 3.8776e+02, 8.1000e+02, 8.7814e+02, 8.8096e-01, 0.0000e+00],
        [2.2295e+02, 4.0504e+02, 3.4394e+02, 8.5905e+02, 8.7790e-01, 0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值