python测试程序的qps和响应时间代码_Python并发请求下限制QPS(每秒查询率)的实现代码...

限流技巧
本文介绍了三种在Python并发请求中限制QPS的方法:使用time.sleep(1)阻塞进程、采用令牌桶(token bucket)算法以及使用GRequests-Throttle库。这些方法有助于避免因请求过快而导致的服务器响应错误。

前两天有一个需求,需要访问某API服务器请求数据,该服务器限制了QPS=2(哈哈应该都知道是哪个服务器了吧_(:з」∠)_),因为QPS很小所以就使用阻塞式请求。后来开通了服务,QPS提高到了20,阻塞式请求满足不了这个QPS了,于是使用了GRequests来并发请求数据,但这里又遇到了一个问题:并发太快,服务器通过发送错误码拒绝了很多数据的响应,造成了资源的浪费。

故在此记录以下几种 节流(Throttle) 方法:

以下均假设有如下包和数据前提:

import grequests

urls = [

"https://www.baidu.com",

"https://www.google.com"

]

requests = [

grequests.get(url)

for url in urls

] * 1000

rate = 20 # 表示 20 请求/秒

time.sleep(1)

这是最简单的方法,通过time.sleep(1)阻塞进程来控制每秒并发数量。用公式表达如下:Time=请求准备时延+请求发送时延+time.sleep(1)Time = 请求准备时延 + 请求发送时延 + time.sleep(1)Time=请求准备时延+请求发送时延+time.sleep(1)   但是这种方法有一个较小的问题:不精确 。数据量越大,方差越大。

from time import sleep

req_groups = [

requests[i: i+rate]

for i in range(0, len(requests), rate)

]

ret = []

for req_group in req_groups:

ret += grequests.map(req_group)

sleep(1)

print(ret)

令牌桶(token bucket)方法

这种方法较精确,可以确保误差不超过±1(当然前提是你的电脑和目标服务器都能承受的了高并发)。以下是耗时的公式表示:Time=请求准备时延+请求发送时延+令牌桶阻塞时延Time = 请求准备时延 + 请求发送时延 + 令牌桶阻塞时延Time=请求准备时延+请求发送时延+令牌桶阻塞时延 令牌桶阻塞时延≈1−请求准备时延+请求发送时延令牌桶阻塞时延 ≈ 1 - 请求准备时延 + 请求发送时延令牌桶阻塞时延≈1−请求准备时延+请求发送时延   这种方法当然也有一点缺陷,CPU看起来会很高(这是由于 while pass),尽管CPU真实使用率很低。

from time import time

class Throttle:

def __init__(self, rate):

self.rate = rate

self.tokens = 0

self.last = 0

def consume(self, amount=1):

now = time()

if self.last == 0:

self.last = now

elapsed = now - self.last

if int(elapsed * self.rate):

self.tokens += int(elapsed * self.rate)

self.last = now

self.tokens = (

self.rate

if self.tokens > self.rate

else self.tokens

)

if self.tokens >= amount:

self.tokens -= amount

else:

amount = 0

return amount

throttle = Throttle(rate)

req_groups = [

requests[i: i+rate]

for i in range(0, len(requests), rate)

]

ret = []

for req_group in req_groups:

ret += grequests.map(req_group)

while throttle.consume():

pass # 阻塞

print(ret)

GRequests-Throttle

这是一个使用令牌桶(token bucket)方法进行封装的GRequests修改版,使用方法很简单:

首先安装grequests-throttle(清华镜像源更新较慢,推荐使用阿里镜像源)

pip install grequests-throttle

import grequests_throttle as gt

ret = gt.map(requests, rate=rate)

print(ret)

总结

如果并发请求数量较小,可以考虑使用time.sleep(1)简单快捷;当并发请求数量较大时,使用令牌桶(token bucket)方法能最大化利用每一秒;如果不想写太多代码,可以使用GRequests-Throttle包进行请求流量控制。

到此这篇关于Python并发请求下限制QPS(每秒查询率)实现的文章就介绍到这了,更多相关Python并发请求下限制QPS(每秒查询率)实现内容请搜索龙方网络以前的文章或继续浏览下面的相关文章希望大家以后多多支持龙方网络!

Google Places API 的每秒查询率QPS, Queries Per Second)限取决于你使用的 **具体 API 接口类型** 是否启用了 **结算账户(Billing)**。以下是截至 2025 年的官方标准。 --- ### ✅ Google Places API QPS汇总 | API 类型 | 未启用 Billing(免费试用) | 已启用 Billing(付费项目) | |--------|--------------------------|----------------------------| | **Text Search / Nearby Search** | 1 QPS | 50 QPS | | **Place Details** | 1 QPS | 50 QPS | | **Find Place (from query)** | 1 QPS | 50 QPS | | **Autocomplete** | 2 QPS | 100 QPS | > 📌 来源:[Google Maps Platform Quotas](https://developers.google.com/maps/quotas) --- ### 🔍 详细说明 #### 1. **QPS 是什么?** - 每秒最多允许发起的请求数。 - 超过会返回 `OVER_QUERY_LIMIT` 错误。 - 是 **实时速率限**,不是每日总量。 #### 2. **启用 Billing 后可提升至高 QPS** - 默认每个项目有基础 QPS 上限(如 50)。 - 如需更高并发,可在 Google Cloud Console 提交 **配额提升申请**(Increase Quota),Google 会审核。 #### 3. **示例场景** ```python # 如果你在循环中连续请求: for place_id in place_ids: get_place_details(place_id) # 每次调用都算 1 次 QPS ``` 如果你在 **同一秒内发出 60 次 `Place Details` 请求**,即使已开通 billing,也会被拒绝。 --- ### 💡 最佳实践:避免超限 #### ✅ 使用 `time.sleep()` 控频率 ```python import time for place_id in place_ids: details = get_place_details(place_id, api_key) time.sleep(0.02) # 每秒最多 50 次 → 每次间隔至少 0.02 秒 ``` > ⚠️ 注意:Google 建议留出安全余量,不要长期跑满 50 QPS。 #### ✅ 使用异步 + 限流器(高级用法) ```python import asyncio import aiohttp from aiohttp import ClientSession from asyncio import Semaphore # 限并发数为 50 semaphore = Semaphore(50) async def fetch_details(session: ClientSession, place_id: str): async with semaphore: params = { 'place_id': place_id, 'fields': 'website,international_phone_number', 'key': API_KEY } async with session.get("https://maps.googleapis.com/maps/api/place/details/json", params=params) as resp: return await resp.json() async def main(): tasks = [fetch_details(session, pid) for pid in place_ids] results = await asyncio.gather(*tasks) ``` > 这种方式适合大规模爬取,但依然要遵守 QPS 日限额。 --- ### 🧮 额外提醒:除了 QPS,还有日限额(Daily Limit) | 限类型 | 免费用户 | 付费用户 | |--------|---------|---------| | 每日总请求次数(默认) | ~1000 次 | 可达数百万次(按需调整) | | 单个项目最大日请求 | 不可用 | 可通过配额申请提高 | > 💬 举例: > 即使你有 50 QPS,但如果每天只能调用 100,000 次,达到后也会被限。 --- ### ❗ 特别注意:next_page_token 的延迟要求 虽然不属于 QPS,但 Google 明确要求: > 使用 `next_page_token` 获取下一页结果时,必须等待 **至少 2 秒** 才能发送请求。 否则会返回无效 token 或错误。 ```python time.sleep(2) # 必须加! params = {'pagetoken': next_token, 'key': API_KEY} response = requests.get(url, params=params) ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值