1万条数据大概占多大空间_如何快速安全的插入千万条数据?

本文介绍了处理千万条数据的策略,包括估算文件大小、批量插入方法、确保数据完整性、调整数据库配置以及处理中途错误的方案。通过设置最大允许包大小和分批插入,成功在20分钟内将1000万条1.5GB的数据插入MySQL。
摘要由CSDN通过智能技术生成
  • 前言
  • 思路
  • 实现
  • 总结
  • 完整代码

  • 《Java 2019 超神之路》
  • 《Dubbo 实现原理与源码解析 —— 精品合集》
  • 《Spring 实现原理与源码解析 —— 精品合集》
  • 《MyBatis 实现原理与源码解析 —— 精品合集》
  • 《Spring MVC 实现原理与源码解析 —— 精品合集》
  • 《Spring Boot 实现原理与源码解析 —— 精品合集》
  • 《数据库实体设计合集》
  • 《Java 面试题 —— 精品合集》
  • 《Java 学习指南 —— 精品合集》

前言

最近有个需求解析一个订单文件,并且说明文件可达到千万条数据,每条数据大概在20个字段左右,每个字段使用逗号分隔,需要尽量在半小时内入库。

思路

1.估算文件大小

因为告诉文件有千万条,同时每条记录大概在20个字段左右,所以可以大致估算一下整个订单文件的大小,方法也很简单使用FileWriter往文件中插入一千万条数据,查看文件大小,经测试大概在1.5G左右;

2.如何批量插入

由上可知文件比较大,一次性读取内存肯定不行,方法是每次从当前订单文件中截取一部分数据,然后进行批量插入,如何批次插入可以使用insert(...)values(...),(...)的方式,经测试这种方式效率还是挺高的;

3.数据的完整性

截取数据的时候需要注意,需要保证数据的完整性,每条记录最后都是一个换行符,需要根据这个标识保证每次截取都是整条数,不要出现半条数据这种情况;

4.数据库是否支持批次数据

因为需要进行批次数据的插入,数据库是否支持大量数据写入,比如这边使用的mysql,可以通过设置max_allowed_packet来保证批次提交的数据量;

5.中途出错的情况

因为是大文件解析,如果中途出现错误,比如数据刚好插入到900w的时候,数据库连接失败,这种情况不可能重新来插一遍,所有需要记录每次插入数据的位置,并且需要保证和批次插入的数据在同一个事务中,这样恢复之后可以从记录的位置开始继续插入。

实现

1.准备数据表

这里需要准备两张表分别是:订单状态位置信息表,订单表;

CREATE TABLE `file_analysis` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `file_type` varchar(255) NOT NULL COMMENT '文件类型 01:类型1,02:类型2&
YOLO系列是基于深度学习的端到端实时目标检测方法。 PyTorch版的YOLOv5轻量而高性能,更加灵活和易用,当前非常流行。 本课程将手把手地教大家使用labelImg标注和使用YOLOv5训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。  本课程的YOLOv5使用ultralytics/yolov5,在Windows和Ubuntu系统上分别做项目演示。包括:安装YOLOv5、标注自己的数据集、准备自己的数据集(自动划分训练集和验证集)、修改配置文件、使用wandb训练可视化工具、训练自己的数据集、测试训练出的网络模型和性能统计。 除本课程《YOLOv5实战训练自己的数据集(Windows和Ubuntu演示)》外,本人推出了有关YOLOv5目标检测的系列课程。请持续关注该系列的其它视频课程,包括:《YOLOv5(PyTorch)目标检测:原理与源码解析》课程链接:https://edu.csdn.net/course/detail/31428《YOLOv5目标检测实战:Flask Web部署》课程链接:https://edu.csdn.net/course/detail/31087《YOLOv5(PyTorch)目标检测实战:TensorRT加速部署》课程链接:https://edu.csdn.net/course/detail/32303《YOLOv5目标检测实战:Jetson Nano部署》课程链接:https://edu.csdn.net/course/detail/32451《YOLOv5+DeepSORT多目标跟踪与计数精讲》课程链接:https://edu.csdn.net/course/detail/32669《YOLOv5实战口罩佩戴检测》课程链接:https://edu.csdn.net/course/detail/32744《YOLOv5实战中国交通标志识别》课程链接:https://edu.csdn.net/course/detail/35209 《YOLOv5实战垃圾分类目标检测》课程链接:https://edu.csdn.net/course/detail/35284  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值