spearman相关性分析_【统计软件】最傻瓜式的SPSS操作教程来啦9 相关分析

本文介绍了Pearson、Spearman和Kendall三种相关系数,包括它们的适用条件、计算原理及优缺点。在选择相关系数时,若数据满足正态性,通常选用Pearson;数据不服从正态性时,选择Spearman;而Kendall适用于有序分类数据。了解这些相关系数能帮助我们更准确地分析数据之间的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

df49bc756db7631cbb349d46874c3a4b.gif

 相关分析 

常见的相关系数有三种,它们分别是Pearson、Spearman、Kendall系数,三大相关系数如何选用呢,本期给大家作个小结。

一、Pearson(皮尔逊)

线性相关性(linear correlation):又简称简单相关(simple correlation),用来度量具有线性关系的两个变量之间,相关关系的密切程度及其相关方向,适用于双变量正态分布资料。线性相关系数, 又称为简单相关系数,Pearson相关系数或相关系数。有时也称为积差相关系数(coefficient of product-moment correlation)。

适用条件:

1. 样本容量大于等于30,这样才能保证计算的数据具有代表性,计算出的积差相关系数可以有效说 明两个变量的相关关系。

2. 两个变量的所属总体都呈正态分布,至少是接近正态的单峰分布。

3. 两个变量都是由测量所得的连续性数据。

4. 两个变量间的相关是线性相关。 

5. 排除共变因素的影响。

6. 计算连续变量或是等间距测度的变量间的相关分析。

二、Spearman(斯皮尔曼)<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值