
相关分析
常见的相关系数有三种,它们分别是Pearson、Spearman、Kendall系数,三大相关系数如何选用呢,本期给大家作个小结。
一、Pearson(皮尔逊)
线性相关性(linear correlation):又简称简单相关(simple correlation),用来度量具有线性关系的两个变量之间,相关关系的密切程度及其相关方向,适用于双变量正态分布资料。线性相关系数, 又称为简单相关系数,Pearson相关系数或相关系数。有时也称为积差相关系数(coefficient of product-moment correlation)。
适用条件:
1. 样本容量大于等于30,这样才能保证计算的数据具有代表性,计算出的积差相关系数可以有效说 明两个变量的相关关系。
2. 两个变量的所属总体都呈正态分布,至少是接近正态的单峰分布。
3. 两个变量都是由测量所得的连续性数据。
4. 两个变量间的相关是线性相关。
5. 排除共变因素的影响。
6. 计算连续变量或是等间距测度的变量间的相关分析。
二、Spearman(斯皮尔曼)<