计算机作业图,图像处理计算机作业.doc

图像处理计算机作业

第一章 上机作业

使用函数读取图像lena512_gray.bmp,存取到矩阵中

clear;

A=imread('lena512_gray.bmp');

B=imread('lena512_color.bmp');

C=rgb2gray(B);

figure(1);subplot(1,2,1);imshow(A);title('读取灰度图像');subplot(1,2,2);imshow(B);title('读取彩色图像');

figure(2);subplot(1,2,1);imshow(B);title('原彩色图像');subplot(1,2,2);imshow(C);title('把彩色图像转换为灰度图像');

for i=1:256

for j=1:256

D(i,j)=A(i,j);

end

end

figure(3);subplot(1,2,1);imshow(A);title('显示原图像');subplot(1,2,2);imshow(D);title('显示图像的局域部分');

………………………………………………………………………………………………………………………………………………………………………………………………………………

第二章 计算机作业

图像的采样

%下采样

A=imread('barb1.bmp');

[m,n]=size(A);

B=zeros(m/2,n);

for i=1:m/2

B(i,1:end)=A(2*i,1:end);

end

C=zeros(m/2,n/2);

for j=1:n/2

C(1:end,j)= uint8(B(1:end,2*j));

end

D = uint8(C);

imshow(D);

%下采样

A=imread('barb1.bmp');

[m,n]=size(A);

B=zeros(m/2,n);

for i=1:m/2

B(i,1:end)=A(2*i,1:end);

end

C=zeros(m/2,n/2);

for j=1:n/2

C(1:end,j)= uint8(B(1:end,2*j));

end

D = uint8(C);

subplot(1,2,1);

imshow(D);

%上采样

[m,n]=size(D);

F=zeros(2*m,n);

for i=1:2*m-1

F(i,1:end)=D(floor(i/2)+1,1:end);

end

G=zeros(2*m,2*n);

for j=1:2*n-1

G(1:end,j)= uint8(F(1:end,floor(j/2)+1));

end

E = uint8(G);

subplot(1,2,2);

imshow(E);

>> B=imresize(A,[row/2,column/2]);

>> imshow(B);

>> A=imread('barb1.bmp');

>> [row,column]=size(A);

>> B=imresize(A,[row/2,column/2]);

>> imshow(B);

(2)

>> G=im2bw(A,0.4);

>> imshow(G);

>> G=im2bw(A,0.48);

>> imshow(G);

>> G=im2bw(A,0.5);

>> imshow(G);

>> G=im2bw(A,0.55);

>> imshow(G);

对比可知 阈值设置在0.48左右比较合适。

(3)

>> A=imread('barb2.bmp');

>> noise=uint8(randn(size(A)));

>> B=A+noise;

>> imshow(B);

第三章 上机作业

(1) 图像的直方图

I=imread('malight.bmp');

m1=zeros(1,256);

[m,n]=size(I);

for i=1:256

for j=1:256

m1(I(i,j))=m1(I(i,j))+1;

end

end

x=1:256;

y=m1;

subplot(1,2,1);

imshow(I);

title('原图像');

subplot(1,2,2);

bar(x,y,'g');

title('直方图');

调用imhist的效果更好一些。

。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

图像的直方图均衡

I=imread('malight.bmp');

m1=zeros(1,256);

[m,n]=size(I);

for i=1:256

for

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值