Minimum Path Sum(路线上元素和的最小值)

题目描述

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time

题意从左上到右下,所有可能的路径中,求经过的元素和最小值。

动态规划基础题,dp每个状态由左边或者上边的值中,较小的值与当前状态的值  相加得到。 

注意考虑边界情况。


  创建一个二维数组或者vector容器dp,行列数与grid相同,同样每个位置的值记录了由左上到此位置的最短距离。

实现代码:

           class Solution {
public:
    int minPathSum(vector<vector<int> > &grid) {
        int row=grid.size();
        int col=grid[0].size();
        if(row==0 || col==0) return 0;
        int dp[row][col];
        for(int i=0;i<row;i++)
        {
            for(int j=0;j<col;j++)
            {
                if(i==0 && j==0)  dp[0][0]=grid[0][0];
                else if(i==0) dp[0][j]=grid[0][j]+dp[0][j-1];
                else if(j==0) dp[i][0]=grid[i][0]+dp[i-1][0];
                else dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i][j];
            }
        }
        return dp[row-1][col-1];
    }
};   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值