- 求解下图中阴影部分的面积,假设正方形的边长为1

画辅助线:为对顶的两个三角形作高线

第一步:定理 :两角分别对应相等的两个三角形相似。 关注对顶的两个三角形
证 明:1.平行线的相交线内角相等,2.两个顶角相等, 因此这两个三角形有两个角相等,则为相似三角形;
第二步:性质:相似三角形任意对应线段的比等于相似比。
求相似比:对顶的两个三角形,其中两个底边分别在正方形边上,为对应边。因此相似比(上比下) r = 1/2;
第三步:性质:相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比
求高线:由于两个三角形的高之和等于1;且两者高之比为1:2;因此底部三角形的高占比为2/3;因此 h = 1* 2/3;
第四步:性质:三角形面积 = 1/2*底边长*高。
求面积:底部三角形面积为:S=1/2 * 1 * 2/3 = 1/3 ,因此整个阴影部分面积为正方形面积的三分之一;
终极思考:图中每一块的面积是多少呢?
先给出答案,具体思路大家自行思考:
