方法一:
1、我构造了一个cont_list,结构为列表嵌套字典,字典是每一个样本,类似于我们爬虫爬下来的数据的结构
2、利用pd.DataFrame方法先将数据转换成一个二维结构数据,如下方打印的内容所示,cloumns指定列表,列表必须是列表
3、to_csv方法可以直接保存csv文件,index=False表示csv文件不加行序号
保存csv结果
应用到我们的爬虫代码,传入的con_list就是[{},{},{}****]这样的额数据结构,encoding="utf_8_sig",encoding="gb18030”,我这边解决中文编码问题
是不是很方便就,2行代码即可搞定保存,是不是比上次讲的方法简单好多,其实很多方法,还有python的优秀库,都使python这门语言在数据分析领域有极大的优势
方法二:
流程:模拟登录→获取Html页面→正则解析所有符合条件的行→逐一将符合条件的行的所有列存入到CSVData[]临时变量中→写入到CSV文件中
核心代码:
####写入csv文件中
with open(self.CsvFileName, 'wb') as csvfile:
spamwriter = csv.writer(csvfile, dialect='excel')
#设置标题
spamwriter.writerow(["游戏账号","用户类型","游戏名称","渠道","充值类型","充值金额","返利金额","单号","日期"])
#将CsvData中的数据循环写入到CsvFileName文件中
for item in self.CsvData:
spamwriter.writerow(item)
完整代码:
# coding=utf-8
import urllib
import urllib2
import cookielib
import re
import csv
import sys
class Pyw():
#初始化数据
def __init__(self):
#登录的Url地址
self.LoginUrl="http://v.pyw.cn/login/check"
#所要获取的Url地址
self.PageUrl="http://v.pyw.cn/Data/accountdetail/%s"
# 传输的数据:用户名、密码、是否记住用户名
self.PostData = urllib.urlencode({
"username": "15880xxxxxx",
"password": "a123456",
"remember": "1"
})
#第几笔记录
self.PageIndex=0;
#循环获取共4页内容
self.PageTotal=1
#正则解析出tr
self.TrExp=re.compile("(?isu)<tr[^>]*>(.*?)</tr>")
#正则解析出td
self.TdExp = re.compile("(?isu)<td[^>]*>(.*?)</td>")
#创建cookie
self.cookie = cookielib.CookieJar()
#构建opener
self.opener=urllib2.build_opener(urllib2.HTTPCookieProcessor(self.cookie))
#解析页面总页数
self.Total=4
#####设置csv文件
self.CsvFileName="Pyw.csv"
#####存储Csv数据
self.CsvData=[]
#解析网页中的内容
def GetPageItem(self,PageHtml):
#循环取出Table中的所有行
for row in self.TrExp.findall(PageHtml):
#取出当前行的所有列
coloumn=self.TdExp.findall(row)
#判断符合的记录
if len(coloumn) == 9:
# print "游戏账号:%s" % coloumn[0].strip()
# print "用户类型:%s" % coloumn[1].strip()
# print "游戏名称:%s" % coloumn[2].strip()
# print "渠道:%s" % coloumn[3].strip()
# print "充值类型:%s" % coloumn[4].strip()
# print "充值金额:%s" % coloumn[5].strip().replace("¥", "")
# print "返利金额:%s" % coloumn[6].strip().replace("¥", "")
# print "单号:%s" % coloumn[7].strip()
# print "日期:%s" % coloumn[8].strip()
#拼凑行数据
d=[coloumn[0].strip(),
coloumn[1].strip(),
coloumn[2].strip(),
coloumn[3].strip(),
coloumn[4].strip(),
coloumn[5].strip().replace("¥", ""),
coloumn[6].strip().replace("¥", ""),
coloumn[7].strip(),
coloumn[8].strip()]
self.CsvData.append(d)
#模拟登录并获取页面数据
def GetPageHtml(self):
try:
#模拟登录
request=urllib2.Request(url=self.LoginUrl,data=self.PostData)
ResultHtml=self.opener.open(request)
#开始执行获取页面数据
while self.PageTotal<=self.Total:
#动态拼凑所要解析的Url
m_PageUrl = self.PageUrl % self.PageTotal
#计算当期第几页
self.PageTotal = self.PageTotal + 1
#获取当前解析页面的所有内容
ResultHtml=self.opener.open(m_PageUrl)
#解析网页中的内容
self.GetPageItem(ResultHtml.read())
####写入Csv文件中
with open(self.CsvFileName, 'wb') as csvfile:
spamwriter = csv.writer(csvfile, dialect='excel')
#设置标题
spamwriter.writerow(["游戏账号","用户类型","游戏名称","渠道","充值类型","充值金额","返利金额","单号","日期"])
#将CsvData中的数据循环写入到CsvFileName文件中
for item in self.CsvData:
spamwriter.writerow(item)
print "成功导出CSV文件!"
except Exception,e:
print "404 error!%s" % e
#实例化类
p=Pyw()
#执行方法
p.GetPageHtml()
导出结果
读取CSV
import pandas as pd
data = pd.read_table('地址', sep=",")['网址'].values
print(data[1])