LeetCode之1155. 掷骰子的N种方法(附DP详细解析思考过程)

一道动态规划题,虽然自己思考的方向有问题,但是还是值得记录一下,毕竟思考了。

题目

这里有 d 个一样的骰子,每个骰子上都有 f 个面,分别标号为 1, 2, …, f。

我们约定:掷骰子的得到总点数为各骰子面朝上的数字的总和。

如果需要掷出的总点数为 target,请你计算出有多少种不同的组合情况(所有的组合情况总共有 f^d 种),模 10^9 + 7 后返回。

示例 1:

输入:d = 1, f = 6, target = 3
输出:1

示例 2:

输入:d = 2, f = 6, target = 7
输出:6

示例 3:

输入:d = 2, f = 5, target = 10
输出:1

示例 4:

输入:d = 1, f = 2, target = 3
输出:0

示例 5:

输入:d = 30, f = 30, target = 500
输出:222616187

提示:

1 <= d, f <= 30
1 <= target <= 1000

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/number-of-dice-rolls-with-target-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

分析

回溯法

拿到题的第一反应:又是回溯法,从第1个骰子开始投掷,投掷到第d个骰子,每个骰子从点数1开始统计,直到f
回溯法在理论上说是可行的,但是时间复杂度极大,为O(d^f),所以可想而知,回溯法超时了。

动态规划

回溯法不行后,回头想了一下动态规划的方法,但是由于思考的方向不对,差之千里,最后看了题解才做出来。

记录自己的思考

最开始想的是使用1个二维数组dp[i][j]来表示动态规划的存储结构。i为第几个骰子,j为第i个骰子的点数。即1 <= i <= d, 1 <= j <= f
dp[i][j]则表示投掷到第i个骰子,点数为j时,前i个骰子的总点数和
最后只需要统计最后一行总点数和 = target的数量即可。

理想很丰满,现实很骨感。再仔细往深了想,发现其实不可行,因为每一个骰子能够投掷的点数为1~f,而dp[i][j]无法完整的表示在投掷第i的骰子时,投掷前i - 1个骰子的所有情况。
所以该解法GG了。

DP解法

正确的DP解法,应该是使用dp[i][j]表示投掷第i个骰子时,总点数和为j组合个数。即1 <= i <= d, 1 <= j <= target

  • i = 1时,dp[i][1~min(f, target)]的值全为1,因为当投掷第一个骰子时,只有1种组合情况。
    这里解释一下为什么是min(f, target),因为只有1个骰子时,只有可能投掷的点数为[1 ,f],但是如果targetf还小,那么投掷到target之后的点数都是毫无意义的。
  • 按照我们的设计,dp[i][j]为投掷到第i个骰子时,点数为j的组合个数,我们尝试去找当前位置与前面的输出的关系,即找到其转换方程。
  • 这里假设第i个骰子投掷到了k点,1 <= k <= f,则第i - 1个骰子投掷的组合个数为dp[i - 1][j - k]。所以dp[i][j]的组合个数就等于dp[i - 1][j - k]1 <= k <= f组合个数相加
  • 最终结果为第d个骰子投掷点数为target的组合个数,即dp[d][target]
  • 参考以下代码,还做了一些剪枝操作,剪枝操作都在下面注释解释清楚了。

代码

class Solution {
public:
    int numRollsToTarget(int d, int f, int target) {
        if (target < d || target > d * f) {
            return 0;
        }
        
        int mod = 1000000007;
        int dp[31][1001] = {0};

        int min = std::min(f, target);
        int maxValue = f * d;

        for (int i = 1; i <= min; ++i) {
            dp[1][i] = 1; // 表示只有1个骰子时投掷为dp[i][j]的组合个数
        }

        for (int i = 2; i <= d; ++i) {
            // j = i为初始值,是因为第i个骰子的投掷的总数一定是大于等于i的
            for (int j = i; j <= maxValue; ++j) {
            	// 如果j - k < 0 表示点数已经小于0了,没有意义。
                for (int k = 1; j - k >= 0 && k <= f; ++k) {
                    dp[i][j] = (dp[i][j] + dp[i - 1][j - k]) % mod;
                }
            }
        }
        

        return dp[d][target];
    }
};
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读